摘要
考虑带p-Laplacian算子的四阶四点边值问题(φp(x″(t)))″=f(t,x(t),x″(t)),t∈[0,1],x(0)-αx′(0)=0,x(1)+βx′(1)=0,φp(x″(ξ))-γ(φp(x″(ξ)))′=0,φp(x″(η))+δ(φp(x″(η)))′=0,其中φp(s)=s p-2s,p>1;0<ξ,η<1;f∈C([0,1]×R2,R).通过建立上下解方法得到迭代解的存在性.
We are considered with the fourth-order four-point boundary value problem with a p-Laplacian {(φp(x"(t)))"=f(t,x(t)),x"(t),t∈[0,1], x(0)-αx'(0)=0,x(1)+βx'(1)=0, φp(x"(ξ))-γ(φp(x"(ξ)))'=0, φp(x"(η))+δ(φp(x"(η)))'=0 where φp(s)=│s│^p-2s,p〈1;0〈ξ,η〈1;f∈C([0,1]×R^2,R). The existence results for fourth-order four-point boundary value problem via the lower and apper solution method is obtained.
出处
《数学的实践与认识》
CSCD
北大核心
2008年第3期130-134,共5页
Mathematics in Practice and Theory
基金
国家自然科学基金(10671012)
关键词
上下解
四点边值问题
单调迭代
cower and upper solution
four-point boundary value problem
monotone iteration