期刊文献+

一种新的启发式分类器选择方法 被引量:1

New Heuristic Classifier Selection Method
下载PDF
导出
摘要 分类器选择是一种设计多分类器系统的有效方法,从给定候选分类器集中挑选出一个子集,使得该子集集成性能最佳。现有的分类器选择方法大多采用基于集成精度的随机搜索方法,但巨大的搜索复杂度限制了它们在更大系统中的应用。该文提出一种新的选择标准——IWCECR及一种基于IWCECR的启发式搜索算法,在手写体数字识别的实验中,从20个候选分类器中挑选子集,结果表明,该方法具有较高的搜索效率,在子集集成性能方面仅次于穷举法。 Classifier selection is an effective way to design multiple classifier systems. The goal of c:assifier selection is to select a subset of classifiers from a given set of candidate classifiers, to achieve the best combination performance. At present, most of classifier selection methods use the stochastic search based on combination accuracy. The burden of complexity of such search limits their practical applicability for larger systems. This paper presents a new selection criterion—— Improved Weighted Count of Errors and Correct Results(IWCECR) and a new heuristic search method based on IWCECR. In experiments of handwritten digit recognition, it selects a subset from 20 candidate classifiers. Results show that search efficiency of the method outperforms others and in respect of combination performance, the method also has high efficiency, although is lower than exhaust algorithm.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第2期206-208,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60675006 60475003) 北京科技大学基金资助项目
关键词 分类器选择 搜索算法 选择标准 手写体数字识别 classifier selection search algorithm selection criterion handwritten digital recognition
  • 相关文献

参考文献11

  • 1戴汝为等著..汉字识别的系统与集成[M].杭州:浙江科学技术出版社,1998:324.
  • 2Hao Hongwei. Handwritten Chinese Character Recognition by Metasynthetic Approach[J]. Pattern Recognition, 1997, 30(8): 1321-1328. 被引量:1
  • 3Hao Hongwei, Liu Chenglin. Comparison of Genetic Algorithm and Sequential Search Methods for Classifier Subset Selection[C]//Proc. of the 7th International Conference on Document Analysis and Recognition. Edinburgh, Scotland: [s. n.], 2003: 765-769. 被引量:1
  • 4Kittler J, Hater M. On Combining Classifiers[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998, 20(3): 226-239. 被引量:1
  • 5Ruta D, Gabrys B. Classifier Selection for Majority Voting[J]. Information Fusion, 2005, 6(1): 63-81. 被引量:1
  • 6Giacinto G, Roli F. An Approach to the Automatic Design of Multiple Classifier Systems[J]. Pattern Recognition Letters, 2001, 22(1): 25-33. 被引量:1
  • 7Roli F, Giacinto G, Vernazza G. Methods for Designing Multiple Classifiers Systems, Multiple Classifier Systems[C]//Proceedings of the MCS'2001 Workshop. Cambridge, UK: [s. n.], 2001: 78-87. 被引量:1
  • 8Ruta D, Gabrys B. Application of the Evolutionary Algorithms for Classifiers Selection in Multiple Classifier Systems with Majority Voting, Multiple Classifier Systems[C]//Proceedings of the MCS'2001 Workshop. Cambridge, UK: [s. n.], 2001: 399-408. 被引量:1
  • 9Shipp C A, Kuncheva L I. Relationships between Combination Methods and Measures of Diversity in Combining Classifiers[J]. Informatin Fusion, 2002, 3(2): 135-148. 被引量:1
  • 10Aksela M. Comparison of Classifier Selection Methods for Improving Committee Performance, Multiple Classifier Systems[EB/OL]. (2003-10-02). http://www.cis.hut.fi/projects/hcr/aksela_mcs2003.pdf. 被引量:1

同被引文献8

  • 1李国正,杨杰,孔安生,陈念贻.基于聚类算法的选择性神经网络集成[J].复旦学报(自然科学版),2004,43(5):689-691. 被引量:15
  • 2Sirlantzis K,Fairhurst M C,Hoque M S.Genetic Algorithms for Multi-classifier System Configuration:A Case Study in Character Recognition[C] //Proeeedings of MCS'01.[S.l.] :Springer-Verlag,2001:99-108. 被引量:1
  • 3Krogh A,Vedelsby J.Neural Network Ensembles,Cross Validation and Avtive Leaming[C] //Proceedmgs of ANIPS'95.[S.l.] :MIT Press,1995:231-238. 被引量:1
  • 4Sharkey A J C,Sharkey N E,Gerecke U,et al.The'Test and Select" Approach to Ensemble Combination[C] //Proceedings of the 1st International Workshop on Multiple Classifier Systems.[S.l.] :Springer-Verlag,2000:30-44. 被引量:1
  • 5Ruta D,Gabrys B.Application of the Evolutionary Algorithms for Classifier Selection in Multiple Classifier Systems with Majority Voting[C] //Proceedings of MCS'01.[S.l.] :Springer-Verlag,2001:399-408. 被引量:1
  • 6Partridge D,Yates W B,Engineering Multiversion Neural-net Systems[J].Neural Computation,1996,8(9):869-893. 被引量:1
  • 7Giacinto G,Roli F.An Approach to the Automatic Design of Multiple Classifier Systems[J].Pattem Recognition Letters,2001,22(1):25-33. 被引量:1
  • 8Aksela M.Comparison of Classifier Selection Methods for Improving Committee Performance,Multiple Classifier Systems[Z].(2003-10-02).http://www.cis.hut.fi/projects/hcr/aksela_mcs2003.pdf. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部