期刊文献+

基于粒子群理论的板形模糊模式识别方法 被引量:18

Fuzzy Pattern Recognition Method of Flatness Based on Particle Swarm Theory
下载PDF
导出
摘要 带钢板形的模式识别是板形闭环控制的关键环节,板形模式的识别结果直接影响着板形控制精度。随着板形控制手段的不断更新,对板形模式识别方法提出更高的要求。为克服传统板形模式识别方法抗干扰能力差、逼近阶难以确定的缺点,依据模糊分类原理,运用欧式距离的择近原则对板形模式进行分类,完成板形信号的模式识别。在此基础上,为进一步提高识别精度,将20世纪90年代发展起来的具有全局优化能力的粒子群理论应用于板形模式识别,对模式识别的结果进行优化,并将其与单纯形法优化结果进行对比。试验结果证明了粒子群优化算法的有效性,该算法能够提高识别精度,使优化后的结果能更精确地控制板形调控机构,以适应高精度板形控制要求。 Pattern recognition of strip flatness is the key to flatness close-loop control system. The result of pattern recognition of strip flatness has the direct effects on strip flatness control precision. With the development of strip flatness control methods, higher demands are presented for pattern recognition of strip flatness. To overcome the disadvantage of poor anti-interference ability and uncertain approaching ranks in traditional flatness pattern recognition, the fuzzy pattern recognition method of flatness is given according to the fuzzy classification theory, and the flatness pattern is classified by selecting nearness principle of Euclidean distance. On the basis of fuzzy pattern recognition, particle swarm theory, developed since 1990s, with global optimization capability is applied to optimize the result of pattern recognition. Compared with the simplex optimization method, validity of particle swarm theory applied in flatness pattern recognition is testified. The result after optimization can accurately control the flatness adjusting sets to meet the need of high precision flatness control.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2008年第1期173-178,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金(60474044 50675189) 河北省自然科学基金(E2004000221)资助项目。
关键词 板形 模糊模式识别 粒子群 欧式距离 Flatness Fuzzy pattern recognition Particle swarm Euclidean distance
  • 相关文献

参考文献12

  • 1彭艳..基于条元法的HC冷轧机板形预设定控制理论研究及工业应用[D].燕山大学,2000:
  • 2尹国芳,王益群,孙旭光.基于神经网络的板形信号模式识别方法的研究[J].中国机械工程,2004,15(24):2207-2210. 被引量:8
  • 3张秀玲,刘宏民.板形模式识别的GA-BP模型和改进的最小二乘法[J].钢铁,2003,38(10):29-34. 被引量:46
  • 4肖健华编著..智能模式识别方法[M].广州:华南理工大学出版社,2006:202.
  • 5王益群,尹国芳,孙旭光.板形信号模式识别方法的研究[J].机械工程学报,2003,39(8):91-94. 被引量:14
  • 6HASEGAWA Akihiko,TAKI Fumio.Development of fuzzy set theory-based shape control system for cold strip mill[J].Nippon Steel Research Journal,1991,49:59-62. 被引量:1
  • 7EBERHART R C,SHI Y.Particle swarm optimization:developments,applications and resources[C]//Proc.Congress on Evolutionary Computation,Soul,South Korea.Piscataway,NJ:IEEE,2001:81-86. 被引量:1
  • 8吴启迪,汪镭著..智能微粒群算法研究及应用[M].南京:江苏教育出版社,2005:300.
  • 9BAUMGARTNER U,MAGELE C,RENHART W.Pareto optimality and particle swarm optimization[J].IEEE Transactions on Magnetics,2004,40(2):1 172-1 175. 被引量:1
  • 10LEE L F,BERGER C S.Identification of shape control system of sendzimir mill[J].National Conference Publication-Institution of Engineers,1990,90:17-21. 被引量:1

二级参考文献10

  • 1连家创 刘宏民.板形板厚控制[M].北京:兵器工业出版社,1996.. 被引量:4
  • 2刘惟信.机械最优化设计[M].北京:清华大学出版社,1986.. 被引量:62
  • 3边肇祺.模式识别[M].清华大学出版社,1999.. 被引量:61
  • 4程卫国.MATLAB5.3应用指南[M].北京:人民邮电出版社,2000.. 被引量:16
  • 5杨景明.宽板板形显示及其分段张力数据处理方法的研究[J].东北重型机械学院学报,1987,(6):24-27. 被引量:1
  • 6Caristedt A G, Keijser O. Modern approach to flatness measurement and control in cold rolling. Iorn and Steel Engineer, 1991, 68(1): 34-37. 被引量:1
  • 7Hoshino I, Kawai M, Kawai M, et al. Observer-based multivariable flayness control of the rolling milling mill. In: 12th World Internation Federration of Automatic Control, 1993:149-153. 被引量:1
  • 8Caristedt A G, Keijser O.Modern Approach to Flatness Measurement and Control in Cold Rolling. Iron and Steel Engineer,1991,68(1):34~37 被引量:1
  • 9Spooner P D. New Techniques for Shape Measurement. Iron and Steel,1994,71(11): 36~39 被引量:1
  • 10乔俊飞,郭戈,柴天佑,王伟.神经网络在板形检测中的应用[J].中国有色金属学报,1998,8(3):551-556. 被引量:6

共引文献56

同被引文献234

引证文献18

二级引证文献167

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部