期刊文献+

基于微粒群算法的生料浆调配多目标满意优化

Multi-objective satisfactory optimization for raw mix slurry preparing process based on Particle Swarm Optimization
下载PDF
导出
摘要 氧化铝生料浆优化调配是一个多目标、多约束且非线性的0-1组合优化问题。首先给出了该问题的数学描述,然后根据调配过程判断生料浆质量是否达标的不同满意标准,基于满意度原理,将带约束的多目标优化问题转换为求多目标和多约束综合满意度最大的满意优化问题,最后提出一种改进的离散微粒群算法对该问题进行求解。实例仿真和工业应用证明了模型与算法的有效性。 Raw mix slurry optimal preparing of alumina is a multi-objective multi-constrained and nonlinear problem,and is also a O-1 combination optimization problem.In the paper,mathematical description of the problem is firstly given and different satis- factory standards are set to judge whether the quality of raw mix slurry reaches the standard of preparing process,based on the satisfactory degree theory,the multi-objective optimal problem with constraints is converted into the satisfactory optimal problem which solves the maximum of multi-objective and multi-constrained satisfactory, degree;finally,an improved discrete particle swarm optimization algorithm is proposed to solve this problem.The simulation case and industrial application show the effective- ness of the model and algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第1期197-201,共5页 Computer Engineering and Applications
基金 国家重点基础研究发展规划(973)(the National Grand Fundamental Research973Program of China under Grant No.2002CB312203) 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60574030) 湖南省自然科学基金(the Natural ScienceFoundation of Hunan Province of China under Grant No.06FD026)。
关键词 氧化铝生料浆调配过程 满意优化 微粒群算法 多目标 raw mix slurry preparing of alumina process satisfactory optimization Particle Swarm Optimization algorithm multiobjective
  • 相关文献

参考文献14

  • 1陈红武.烧结法氧化铝生料浆配料算法的改进[J].世界有色金属,2001(12):36-40. 被引量:6
  • 2姚新胜,黄洪钟,周仲荣.机械满意优化中满意度函数的建立方法[J].机械科学与技术,2004,23(4):399-401. 被引量:10
  • 3谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:421
  • 4Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proc IEEE Int Conf on Neural Networks.Piscataway,NJ:IEEE Press,1995:1942-1948. 被引量:1
  • 5Eberhart R,Kennedy J.A new optimizer using particle swarm theory[C]//Proc 6th Int Symposium on Micro Machine and Human Science.Piscataway,NJ:IEEE Press,1995:39-43. 被引量:1
  • 6Eberhart R C,Shi Y.Particle swarm optimization:developments,applications and resources[C]//Proc of Congress on Evolutionary Computation.Seoul:IEEE,2001:81-86. 被引量:1
  • 7Claudia O.The use of particle swarm optimization for dynamical analysis in chemical processes[J].Computers and Chemical Engineering,2002,26(12):1783-1793. 被引量:1
  • 8Zhou J L,Duan Z C,Li Y,et al.PSO-based neural network optimization and its utilization in a boring machine[J].Journal of Materials Processing Technology,2006,178(1-3):19-23. 被引量:1
  • 9Fan Shu-Kai S,Zahara E.A hybrid simplex search and particle swarm optimization for unconstrained optimization[J].European Journal of Operational Research,2007,181 (2):527-548. 被引量:1
  • 10Kennedy J,Eberhart R C.A discrete binary version of the particle swarm algorithm[C]//Proceedings of the IEEE International Conference on Systems,Man and Cybernetics.Piscataway,NJ:IEEE Press,1997:4104-4109. 被引量:1

二级参考文献82

  • 1胡思继.铁路运输计划指标纵向分解的满意度法[J].铁道学报,1993,15(1):118-122. 被引量:6
  • 2任平.优化理论中的令人满意准则[J].模糊数学,1983,(4):111-112. 被引量:13
  • 3(英)S·巴尼特.科技人员用的矩阵方法[M].陕西科学技术出版社,.5. 被引量:1
  • 4王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107. 被引量:1
  • 5[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930. 被引量:1
  • 6[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469. 被引量:1
  • 7[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100. 被引量:1
  • 8[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976. 被引量:1
  • 9[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948. 被引量:1
  • 10[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43. 被引量:1

共引文献914

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部