期刊文献+

一种新的调节交叉和变异概率的自适应算法 被引量:12

A new adaptive algorithm for regulating the probabilities of crossover and mutation
下载PDF
导出
摘要 提出一种新的基于模糊控制策略的交叉和变异概率自适应调节算法.该算法以相邻两代群体之间平均适应度函数和标准差的差值作为输入,以交叉和变异概率的变化量作为输出.并提出了与输入相对应的自适应归一化算子以及新的基于启发式知识的模糊规则,用于交叉和变异概率的调节.对3种不同测试函数的数值仿真研究表明,与其他2种自适应模糊控制算法相比,该调节算法可使遗传算法具有更快的搜索速度和更高的搜索质量. A new adaptive algorithm for regulating the probabilities of crossover and mutation based on fuzzy logic is proposed. The changes of average fitness value and standard deviation between two continuous generations are selected as input, while the changes of crossover probability and mutation probability as output. Two adaptive scaling factors are introduced for normalizing the input and new fuzzy rules based on domain heuristic knowledge are investigated for adjusting the probabilities of crossover and mutation. Numerical simulation studies of three different test functions are carried out, and the simulation results show that the genetic algorithm with the proposed algorithm exhibits improved search speed and quality compared with two other adaptive fuzzy control algorithms.
出处 《控制与决策》 EI CSCD 北大核心 2008年第1期79-83,共5页 Control and Decision
基金 国家自然科学基金项目(60374032)
关键词 遗传算法 交叉概率 变异概率 模糊控制 Genetic algorithm Crossover probability Mutation probability Fuzzy control
  • 相关文献

参考文献10

  • 1Mar K Y,Wong Y S,Wang X X.An adaptive genetic algorithm for manufacturing cell formation[J].Int J of Manufacturing Technology,2000,16(7):491-497. 被引量:1
  • 2Srinivas M,Patnaik L M.Adaptive probabilities of crossover and mutation in genetic algorithm[J].IEEE Trans on Systems,Man and Cybernetics,1994,24(4):656-667. 被引量:1
  • 3Wu Q H,Cao Y J,Wen J Y.Optimal reactive power dispatch using an adaptive genetic algorithm[J].Electrical Power and Energy Systems,1998,20 (8):563-569. 被引量:1
  • 4Song Y H,Wang G S,Wang P Y,et al.Environmental/economic dispatch using fuzzy logic controlled genetic algorithm[C].IEE Proc on Generation,Transmission and Distribution.Stevenage:Michael Faraday House,1997:377-382. 被引量:1
  • 5Subbu R,Sanderson A C,Bonissone P P.Fuzzy logic controlled genetic algorithms versus tuned genetic algorithms:An agile manufacturing application[C].Proc of the 1998 IEEE ISIC/CIRA/ISAS Joint Conf.Gaitherberg,1998:434-440. 被引量:1
  • 6Yun Y,Gen M.Performance analysis of adaptive genetic algorithm with fuzzy logic and heuristics[J].Fuzzy Optimization and Decision Making,2003,2 (2):161-175. 被引量:1
  • 7李擎,郑德玲,唐勇,陈占英.一种新的模糊遗传算法[J].北京科技大学学报,2001,23(1):85-89. 被引量:30
  • 8Wang K J.A new fuzzy genetic algorithm based on population diversity[C].Proc of 2001 Int Symposium on Computational Intelligence in Robotics and Automation.Banff,2001:108-112. 被引量:1
  • 9Liu H B,Xu Z G,Abraham A.Hybrid fuzzy-genetic algorithm approach for crew grouping[C].Proc of the 5th Int Conf on Intelligent Systems Design and Applications.Wroclaw,2005:332-337. 被引量:1
  • 10Michalewicz Z.Genetic algorithms + data structures = evolution program[M].2nd ed.New York:Springer,1994. 被引量:1

二级参考文献4

共引文献29

同被引文献91

引证文献12

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部