期刊文献+

基于形式概念分析的柔性决策规划 被引量:1

Flexible Decision Planning Based on Formal Concept Analysis
下载PDF
导出
摘要 关联规则获取是知识发现和数据挖掘中的核心问题之一。对超市来讲,从交易数据中挖掘出的关联规则有两点重要意义:一是有助于设计商品的摆放位置;二是帮助商品进货搭配规划,为更好利用关联规则进行进货搭配规划,知识工程师不仅需要考虑关联规则的可信度、支持度和兴趣度,更需要考虑支持集对关联规则的贡献度和关联规则自身的平衡度和复杂度。本文首先采用形式概念分析理论挖掘交易数据中的关联规则,这些规则具有100%的可信度。然后,在关联规则柔性筛选的基础上进行商品进货决策规划。所谓柔性是指用户可自己定义规则的不同阈值组合(例如析取和合取)选择规则。 One of the core tasks of knowledge discovery and data mining is the mining of association rules. For some supermarket, they mainly focus on the following two important significances of association rules acquired from a lot of trade-off data: one is that they can be used to arrange the places of correlative products on the shelves, and the other is that they can be used to plan harmonious stocks of the correlative products. In order to settle the aims, knowledge engineers not only should take into account confidences, supports and interest degree of association rules but focus on contribution degree of support set and balance/complexity of association rules. In the paper, the theory of Formal Concept Analysis are firstly used to acquire association rules with confidence 100% from a large of trade-off formal context, and then discussed the products planning based on flexible filtering association rules. Flexibility means that users can define different thresholds combination of rules (e. g. disjunction and conjunction) for choosing satisfactory rules.
出处 《计算机科学》 CSCD 北大核心 2008年第1期213-215,235,共4页 Computer Science
基金 山东省优秀中青年科学家奖励基金“图的因子理论及其在网络技术中的应用”(编号2005BS01016)资助
关键词 形式概念分析 关联规则 柔性筛选方法 Formal concept analysis Association rule Flexible filtering method
  • 相关文献

参考文献5

二级参考文献15

  • 1张凯,胡运发,王瑜.基于互关联后继树的概念格构造算法[J].计算机研究与发展,2004,41(9):1493-1499. 被引量:15
  • 2郑丽英.基于trie的关联规则发现算法[J].兰州理工大学学报,2004,30(5):90-92. 被引量:3
  • 3左万利 刘居正.包含正负属性的关联规则及其挖掘.第十六届全国数据库学术会议论文集[M].兰州,1999.288-292. 被引量:1
  • 4Aggarwal C C,Proc of the Int’ l Conf on Data Engineering,1998年,402页 被引量:1
  • 5Han J,Proc of Int’ l Conf Very Large Data Bases,1995年,420页 被引量:1
  • 6Cheung D W,Proc of 1996 Int’l Conf on Data Engineering (ICDE’96 ),1996年 被引量:1
  • 7Agrawal R,Imielinski T,Swanmi A.Mining association rules between sets of items in large database[A].In Proc of the ACM SIGMOD Conference on Management of Data[C].Washington DC:SIGMOD,1993.207-216. 被引量:1
  • 8Agrawal R,Srikant R.Fast algorithms for mining association rules[A].In:Proceedings of the 20th International Conference on Very Large Databases[C].Santiago,Chile:[s.n.],1994.487-499. 被引量:1
  • 9Claudio Carpineto,Giovanni Romano. A lattice conceptual clustering system and its application to browsing retrieval[J] 1996,Machine Learning(2):95~122 被引量:1
  • 10王志海,胡可云,胡学钢,刘宗田,张奠成.概念格上规则提取的一般算法与渐进式算法[J].计算机学报,1999,22(1):66-70. 被引量:66

共引文献287

同被引文献16

  • 1梁吉业,王俊红.基于概念格的规则产生集挖掘算法[J].计算机研究与发展,2004,41(8):1339-1344. 被引量:57
  • 2李云,刘宗田,陈崚,徐晓华,程伟.多概念格的横向合并算法[J].电子学报,2004,32(11):1849-1854. 被引量:50
  • 3Ganter B, Wille R.Formal concept analysis:mathematical foundations[M].[S.l.] : Springer, 1999. 被引量:1
  • 4Lei Yuxia.Normalized-scale relations and their concept lattices in relational databases[J].Fundamenta Informatieae, 2009,93 (4) : 393-409. 被引量:1
  • 5Huchard M, Hacene M R, Roume C,et al.Relational concept discovery in structured datasets[J].Ann Math Artif Intell,2007,49: 39-76. 被引量:1
  • 6Cimiano P, Hotho A, Staab S.Learning concept hierarchies from text corpora using formal concept analysis[J].Journal of Artifi- cial Intelligence Research,2005,24:305-339. 被引量:1
  • 7Carpineto C, Romano G.A lattice conceptual clustering system and its application to browsing retrieval[J].Machine Learning, 1996,24(2) :95-122. 被引量:1
  • 8Du Y J, Li H M, Liao Z W.The strategy of matching user queries with Web pages based on formal concept analysis[C]// Huang D S,Heutte L,Loog M.ICIC 2007,CCIS 2:489-498. 被引量:1
  • 9Tilley T, Cole R, Becker P, et al.A survey of formal concept analysis support for software engineering activities[C]//LNAI 3626: Ganter B.Formal Concept Analysis, 2005 : 250-271I. 被引量:1
  • 10Jiang F, Sui Y F, Cao C G.Formal concept analysis in relational database and rough relational database[J].Fundamenta Informaticae, 2007,80: 435-451. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部