摘要
对分数阶Chua系统的混沌动力学行为做了更进一步的研究,研究发现Chua系统出现混沌的最低阶数仅为0.3,并算得此时系统的最大Lyapunov指数为0.016 4;其次,对分数阶Chua等一类具有一个标量非线性项的分数阶混沌系统给出控制策略,讨论了其观测器的设计问题,对该类分数阶混沌系统,给出了一个合适的控制器U,在此控制输入下仅利用一个非线性标量信号实施反馈就可以使观测器的状态变量与被观测分数阶混沌系统的状态变量达到同步。理论分析及仿真结果都证明了该同步方案的有效性。
This paper made further study of the chaotic dynamics to fractional-order Chua' s system, simulation results illustrate that the lowest order to existing chaos is just 0.3, and the maximum Lyapunov exponent is 0. 0164. Secondly, the design of observers for a class of fractional-order chaotic systems like fractional-order Chua's system with a scalar nonlinear term has been discussed. A proper controller U has been developed for the fractional-order chaotic systems, only by employing a scalar nonlinear signal to feedback one can construct a control law to implement the synchronization between the investigated fractional-order chaotic system and its observers under the control input. Theoretical analysis and simulation results illustrate the effectiveness of the proposed synchronization method.
出处
《复杂系统与复杂性科学》
EI
CSCD
2007年第4期45-50,共6页
Complex Systems and Complexity Science
关键词
分数阶Chua系统
混沌
观测器
同步
fractional-order Chua's system
chaos
observer
synchronization