摘要
Correction maps of P/S amplitude ratios for seismic events distributed in Xinjiang, China and its adjacent areas were established using a Bayesian Kriging method for the two seismic stations WMQ and MAK. The relationship between correction maps and variations of along-path features was analyzed and the validity of applying the correction maps to improve performances of P/S discriminants for seismic discrimination was investigated. Results show that obtained correction maps can generally reflect event-station path effects upon corresponding P/S discriminants; and the correction of these effects could further reduce scatters of distance-corrected P/S measurements within earthquake and explosion populations as well as improve their discriminating performances if path effects are a significant factor of such scatters. For example, as corresponding Kriging correction map was applied, the misidentification rate of earthquakes by Pn(2-4 Hz)/Lg(2-4 Hz) at MAK was reduced from 16.3% to 5.2%.
Correction maps of P/S amplitude ratios for seismic events distributed in Xinjiang, China and its adjacent areas were established using a Bayesian Kriging method for the two seismic stations WMQ and MAK. The relationship between correction maps and variations of along-path features was analyzed and the validity of applying the correction maps to improve performances of P/S discriminants for seismic discrimination was investigated. Results show that obtained correction maps can generally reflect event-station path effects upon corresponding P/S discriminants; and the correction of these effects could further reduce scatters of distance-corrected P/S measurements within earthquake and explosion populations as well as improve their discriminating performances if path effects are a significant factor of such scatters. For example, as corresponding Kriging correction map was applied, the misidentification rate of earthquakes by Pn(2-4 Hz)/Lg(2-4 Hz) at MAK was reduced from 16.3% to 5.2%.
基金
Foundation of Verification Researches for Army Control Technology (513310101).