期刊文献+

线对象邻接关系快速重构算法

Quick algorithm for reconstructing line object adjacency relations
下载PDF
导出
摘要 给定向量化坐标,计算n个线对象两两邻接关系,普通算法时间复杂度为O(n*n);理论最好时间复杂度为O(C),其中C是邻接关系的基数。基于散列桶,给出了建立线对象邻接关系的快速算法,其平均时间复杂度为O(n(1+1/r)),r为算法分配的桶数量与n的比,空间复杂度为O(n)。证明了若不允许使用额外空间,则不可能使用排序算法解决该问题;给出了允许使用额外空间条件下的两遍排序算法,时间复杂度为O(n(1bn+1+2/r))。应用表明快速算法比普通算法速度提高1—3个数量级。 Based on known coordinates of lines, the time complexity of usual algorithm for reconstructing adjacency relation among n line objects usually is O(n * n) ; in theory, its optimal value is at least O(C) and C is the cardinal number of adjacency relation. Based on hashed-bucket sorting, a quick algorithm with O( n( 1 + 1/r) ) average time complexity and with O(n) space complexity was given to reconstruct adjacency relation where r was the ratio of number of buckets used in the algorithm to n. It was proved that the problem can not be solved by sorting algorithm without extra space. With necessary extra space, a two-pass sorting algorithm with O[ n( 1b n + 1 + 2/r) ] time complexity, was also given. Applications show that the performance of the quick algorithm is over about 1 - 3 orders of magnitude higher than that of the usual algorithm.
出处 《计算机应用》 CSCD 北大核心 2008年第1期245-247,共3页 journal of Computer Applications
关键词 线对象 邻接关系 桶排序 算法分析 line object adjacency relation hashed-bucket sorting algorithm analysis
  • 相关文献

参考文献7

二级参考文献14

  • 1唐向阳.分段快速排序法[J].软件学报,1993,4(2):53-57. 被引量:48
  • 2杨大顺,计算机研究与发展,1993年,30卷,8期 被引量:1
  • 3宋运康,微计算机应用,1993年,14卷,4期 被引量:1
  • 4Owen A. Bubble sort: An archaeological algorithmic analysis. In: Grissom S, Knox D, Joyce D, Dann W, eds. Proc. of the 34th SIGCSE Technical Symp. on Computer Science Education. New York: ACM Press, 2003.1-5. 被引量:1
  • 5Hore CAR. Quicksort. The Computer Journal, 1962,5(1):10-16. 被引量:1
  • 6Chen JC. Proportion extend sort. SIAM Journal on Computing, 2001,(31)1:323-330. 被引量:1
  • 7Lorin H. Sorting and Sort Systems. Reading: Addison-Wesley Publishing Company, 1975. 被引量:1
  • 8Knuth DE. The Art of Computer Programming, Vol 3: Sorting and Searching. Reading: Addison-Wesley Publishing Company,1973. 被引量:1
  • 9Gray J, Coates J, Nyberg C. Performance/Price sort and PennySort. Technical Report, MS-TR-98-45, Microsoft Research, 1998. 被引量:1
  • 10Sort Benchmark. http://research.microsoft. com/barc/SortBenchmark/ 被引量:1

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部