期刊文献+

基于构形理论的体点问题 被引量:13

'VOLUME-POINT' FLOW PROBLEM BASED ON CONSTRUCTAL THEORY
下载PDF
导出
摘要 基于构形理论对均匀内热源单点冷却的体点问题进行重新优化。沿用近似解法中'高导热通道上热流密度线性分布'的简化,采用常规方法而非近似解法中的等效导热系数法,对高导热通道的分布进行重新优化,得到与精确解法相一致的优化结果,从而证明了近似解法产生较大偏差的原因并不是高导热通道上热流密度线性分布的简化。按照等效前后最大温差相等的原则,对近似解法中提出的等效导热系数重新进行推导,推导出不同的等效导热系数。将该等效导热系数替代近似解法中的等效导热系数,得到与精确解法相一致的优化结果,从而证明了原等效导热系数并不等效,而这也正是近似解法产生偏差的原因。在澄清近似解法产生偏差原因的同时,找到一个既与精确解一致又相对简便的解法。 The optimization of the "volume-point" flow problem which generates heat uniformly is repeated based on constructal theory. With help of the simplification method used in the approximate solution that the heat input into the high conductivity channel is uniform, and the calculation in the routine way, a result consistent with the exact result is deduced, and the cause of the error in the approximate solution is not the reasonable simplification is proved. According to the principle that the maximum temperature after and before the equivalent transformation should be the same, the equivalent thermal conductivity put forward in the approximate solution is deduced again, and a correct equivalent thermal conductivity is obtained. Substituting the equivalent thermal conductivity with the original one, a consistent result is obtained, the original equivalent thermal conductivity is not equivalent, which is also the real cause of the error. The cause of the error is clarified, while a new solution which is relatively simple but consistent with the exact solution is obtained.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2007年第12期55-58,共4页 Journal of Mechanical Engineering
基金 全国优秀博士学位论文作者专项资金(200136) 国家重点基础研究发展计划(973计划 G2000026301)资助项目
关键词 构形理论 体点问题 等效导热系数 广义热力学优化 Constructal theory"Volume-point" flow problemEquivalent thermal conductivity efficientGeneralized thermodynamic optimization
  • 相关文献

参考文献12

二级参考文献78

  • 1过增元.换热器中的场协同原则及其应用[J].机械工程学报,2003,39(12):1-9. 被引量:111
  • 2[1]Aung W. Cooling Technology for Electronic Equipment. New York: Hemisphere, 1988 被引量:1
  • 3[2]Tien C L, Chen G. Challenges in microscale conductive and radiative heat-transfer. Journal of Heat Transfer-Transactions of the ASME, 1994, 116(4): 799~807 被引量:1
  • 4[4]Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume. International Journal of Heat and Mass Transfer, 1997, 40(4): 799~816 被引量:1
  • 5[5]Coulson J M, Richardson J F, Backhurst J R, et al. Chemical Engineering. 3rd ed. New York: Pergamon Press, 1994 被引量:1
  • 6[6]Ketteringham L, James S. The use of high thermal conductivity inserts to improve the cooling of cooked foods. Journal of Food Engineering, 2000, 45: 49~53 被引量:1
  • 7[7]Fukai J, Kanou M, Kodama Y, et al. Thermal conductivity enhancement of energy storage media using carbon fibers. Energy Conversion & management. 2000, 41: 1543~1556 被引量:1
  • 8[8]Bejan A. Shape and Structure, from Engineering to Nature. Cambridge: CambridgeUniversity Press, 2000 被引量:1
  • 9[9]Xia Z Z, Li Z X, Guo Z Y. Heat conduction optimization: high-conductivity constructs based on the principle biological evolution. Heat Transfer 2002, Proceeding of the Twelfth International Heat Transfer Conference, 2002, 2: 27~32 被引量:1
  • 10[2]CHEN L, SUN F. Advances in finite time thermodynamics: Analysis and optimization [M].New York: Nova Science Publishers, 2004. 被引量:1

共引文献123

同被引文献92

引证文献13

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部