期刊文献+

基于多类最小二乘支持向量机的神经元信号识别

Cortical Neural Signals Recognition Based on Multi-class Least Squares Support Vector Machines
下载PDF
导出
摘要 针对大脑运动皮层群体神经元信号与运动行为关系的分析,提出一种基于二叉树的最小二乘支持向量机多类分类算法。在对猴子进行三维空间中8个方向手臂运动实验记录的多通道神经元信号的分析中,通过与标准支持向量机和学习矢量量化神经网络的比较,说明该方法不仅与标准支持向量机同样具有比学习矢量量化方法更强的学习能力和预测能力,而且运算时间比标准支持向量机更短。比较结果表明最小二乘支持向量机对于神经元信号分析的有效性和优越性,进而有利于实现性能更高的用于神经康复的脑机接口系统。 In this paper, a multi - class least squares support vector machines (LS- SVM) algorithm of a binary tree recognition strategy is used to analyze the motor cortical neural signals. The neural ensemble data were recorded simultaneously with kinematics of arm movement while the monkey performed reaching tasks from the center position to eight peripheral targets in a three - dimensional virtual environment. The performance of the LS- SVM based neural activity recognition was compared with that of the standard SVM and the learning vector quantization (LVQ) approach. The results show that the LS- SVM and SVM have smaller empirical risks and better generalization performance than the LVQ approach, hut also LS- SVM costs less computational time than SVM. That demonstrates the LS-SVM algorithm is a suitable approach for brain neural signals analyses, and LS- SVM method holds hope for a possibly more accurate brain - computer interface for neural prosthesis.
出处 《计算技术与自动化》 2007年第4期45-48,共4页 Computing Technology and Automation
基金 国家自然科学基金(60674105 60340420431) 教育部博士点基金(20050487013)
关键词 最小二乘支持向量机 多类分类 二叉树 脑机接口 神经康复 least squares support vector machines (LS- SVM) multi- class classification binary tree brain- computer interface (BCI) neural prosthesis
  • 相关文献

参考文献11

  • 1Wolpaw J R, Birbaumer N, McFarland D J, et al. Brain- computer interfaces for communication and control [J ]. Clinical Neurophysiology, 2002, 113 : 767-791. 被引量:1
  • 2Taylor D M, Helms Tillery S I, and Schwartz A B, Direct cortical control of 3D neuropresthetic devices [J ] Science, 2002, 296:1829-1832. 被引量:1
  • 3Schwartz A B, Taylor D M, and Helms Tillery S I. Extraction algorithms for cortical control of arm prosthetics [J]. Current Opinion in Neurobiology, 2001, 11:701-707. 被引量:1
  • 4Vapnik V N. Statistical learning theory [ M]. New York: Wiley, 1998. 被引量:1
  • 5Olson B P, Si J, Hu J, et al. Closed - loop cortical control of direction using support vector machines [J]. IEEE Trans. Neural Syst. Rehab. Eng., 2005, 13(1): 11-18. 被引量:1
  • 6Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [J]. Neural Processing Letters, 1999, 9(3): 293-300. 被引量:1
  • 7Kohonen T. Self - organization and associative memory (2nd Edition) [M]. Berlin: Springer-Verlag, 1987. 被引量:1
  • 8Lin S, and Si J. Self - organization of firing activities in monkey's motor cortex: trajectory computation from spike signals [J]. Neural Computation, 1997, 9: 607-621. 被引量:1
  • 9Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines [J]. IEEE Trans. on Neural Networks, 2002, 13(2) : 415-425. 被引量:1
  • 10Guo G, Li S Z, Chan K L. Support vector machines for face recognition [J]. Image and Vision Computing, 2001, 19:631-638. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部