摘要
本文研究了系统x+f(x)+g(x)=0的极限环的存在性,其中g(x)有两个间断点并且不满足g(x)x>0(x≠0).还引进[2,3]中定义的Филиппов解的概念,利用Филиппов解的整体存在性和普遍唯一性定理解决方程的解的存在唯一性问题。
This work is about the existence of the limit cycle of equation+f()+g(x)=0,where g(x) has two discontinuous points and does not satisfy g(x)·x>0,x≠0 . We use the concept of Fillipov solution defined in 4,5 and get several theorems of existence of limit cycle.
关键词
特征点
极限环
动力系统
存在性
常微分方程
Fillipov solution, state function, characteristic point, limit cycle.