期刊文献+

聚类电价预测方法研究 被引量:2

Forecasting of Electricity Prices with Cluster Analysis
下载PDF
导出
摘要 针对电价变化模式的复杂性,提出了一种基于聚类分析的电价预测模型。该模型将复杂的电价预测问题分解为更简单的子问题求解,首先通过聚类技术将输入空间划分为若干特征更明显的子空间,然后在子空间内分别使用支持向量机进行建模和预测。聚类分析中先应用减聚类算法自动确定聚类数并获取较优的初始聚类中心,然后采用K-均值算法进一步优化。采用美国PJM电力市场历史边际电价数据进行的仿真研究表明,电价预测模型能有效、稳定地提高电价预测精度。 A new model of electricity price forecasting based on cluster analysis is proposed. The complex forecasting problem is divided into simpler problems in the presented model. The whole input space is partitioned into several disjointed regions. Then, support vector machine is used for modeling and forecasting for each region. In the process of cluster analysis, K-means algorithm is used for further optimizing after the number of partitioned regions and initial cluster centers are automatically obtained by using subtractive clustering method. The simulation research using the historical data from PJM market shows that the proposed model can improve the precision of electricity price forecasting effectively and stably.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2007年第6期1278-1281,共4页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金项目(70671042)
关键词 聚类 电价 预测方法 电力市场 支持向量机 clustering electricity price forecasting method power market support vector machine
  • 相关文献

参考文献12

  • 1CARCIA R C, CONTRERAS J, AKKEREN M et al. A GARCH forecasting model to predict day-ahead electricity prices[J]. IEEE Trans on Power Systems, 2005, 20(2): 867-874. 被引量:1
  • 2袁鹏,左幸,马光文,王静,杨道辉,刘治理.边际电价预测的时段分离组成法[J].水力发电学报,2005,24(2):110-113. 被引量:9
  • 3GARETA R, ROMEO L M, GILA. Forecasting of electricity prices with neural networks[J]. Energy Convers Manage, 2006, 47: 1770-1778. 被引量:1
  • 4林志玲,高立群,张大鹏,张强.基于动态神经网络的系统边际电价预测[J].东北大学学报(自然科学版),2006,27(10):1083-1086. 被引量:5
  • 5SUN Wei, LU Jian-chang, MENG Ming. Application of time series based SVM model on next-day electricity pr/ce forecasting under deregulated power market[C]// Proceedings of the Fifth International Conference on Machine Learning and Cybernetics. Dalian: [s.n.], 2006: 2373-2378. 被引量:1
  • 6GAO C, BOMPARD E, NAPOLI R, et al. Price forecast in the competitive electricity market by support vector machine[J]. Physica A, 2007, 382: 98-113. 被引量:1
  • 7ZHENG Hua, ZHANG Li-zi, XIE Li, et al. SVM model of system marginal price based on developed independent component analysis[C]//Proceedings of the 2004 International Conference on Power System Technology, Singapore: [s.n.], 2004: 1437-1440. 被引量:1
  • 8cHIU S L. Fuzzy model identification based on cluster estimation [J]. Journal of Intelligent and Fuzzy Systems, 1994, 2: 267-278. 被引量:1
  • 9张军峰,胡寿松.基于一种新型聚类算法的RBF神经网络混沌时间序列预测[J].物理学报,2007,56(2):713-719. 被引量:40
  • 10VAPNIK V. The nature of statistical learning theory [M]. New York: Springer-Verlag, 1999. 被引量:1

二级参考文献38

共引文献51

同被引文献22

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部