期刊文献+

系统幅相误差的统计拟合 被引量:3

The Statistical Fitting for Unknown Sensors Gain and Phase
下载PDF
导出
摘要 本文讨论了等距线阵幅相误差的自校正,从理想数据协方差矩阵的Teoplitz结构出发,建立关于系统幅相误差的线性方程组;在最小二乘准则下,采用了分离消无处理,使计算量大幅下降.对系统扰动的统计分布以及阵元个数各作了两种假设;根据不同假设下误差的统计特性,提出了几种不同的约束拟会准则,还对所提约束作了统计性能分析.最后,建立了基于广义特征分解的系统误差自校正方法. The paper deals with the auto-calibration problem for the gain and phase errors oflinear equi-spaced array. Based on the Teoplitz structure of the ideal covariance matrix,linear equations of phase and gain errors are established,and by making use of the least square criterion andthe splitting approachois adopted. Under two different hypotheses of perturbation of the systemand the number of the sensors of the array,several criterions are formed,and the statistical analysis is provided for these constraint conditions. Finally, the generalized eigen-decomposition autocalibration method is presented.
作者 邵朝 保铮
出处 《电子学报》 EI CAS CSCD 北大核心 1997年第9期83-85,73,共4页 Acta Electronica Sinica
基金 国家自然科学基金
关键词 系统幅相误差 统计拟合 广义特征分解 信号分析 Equi-spaced array, Gain and phase errors, Auto-calibration, Statistical fitting,Generealized eigen-decomposition
  • 相关文献

参考文献4

同被引文献22

  • 1刘洪盛,肖先赐.线阵阵元位置误差造成的测向误差估算[J].电波科学学报,2006,21(5):717-721. 被引量:7
  • 2姚康泽,梁甸农.模型误差对阵列信号特征结构的影响及一种校准方法[J].系统工程与电子技术,1996,18(8):44-47. 被引量:12
  • 3Ralph O Schmidt. Multiple emitter location and signal parameter estimation[J]. IEEE Trans. On antennas and propagation. 1986, Ap-34(3). 被引量:1
  • 4Peter Stoica and Arye Nehorai. MUSIC, maximum likelihood, and cramer-rao bound[J]. IEEE Trans.On Acoustics Speech, and Signal Processing. 1989,37(5):720-741. 被引量:1
  • 5A Manikas, Karimi H R and Dacos I. Study of the detection and resolution capabilities of a one-dimensional array of sensors by using differential geometry[J]. IEE Proceedings on Radar, Sonar and Navigation, 1994,141(2): 83-92. 被引量:1
  • 6I Dacos and A Manikas. Estimating the manifold parameters of one-dimensional arrays of sensors [J].Rranklin Inst. Eng. Appl. Math., 1995,332B(3)307-332. 被引量:1
  • 7Fistas, N, and A Manikas. A new general global array calibration method [A]. ICASSP-94. IEEE International Conference on Acoustic,Speech and Signal Processing [C]. 1994(4) :73-76. 被引量:1
  • 8Flanagan, B P and Bell, K L. Improved array self calibration with large sensor position errors for closely spaced sources [A[. Sensor Array and Muhichannel Signal Processing Workshop 2000. Proc. of the 2000IEEE [C] 2000:484-488. 被引量:1
  • 9Anthony J Weiss and Friedlander, B. Effects of modeling errors on the resolution threshold of the music algorithm. [J]. IEEE Trans. On Signal Processing 1994,42(6):1519-1526. 被引量:1
  • 10Yosef Rockah and Peter M Schuhheiss . Array shape calibration using sources in unknown locations-Part I:far field sources [J]. IEEE Trans. on acoustics,speech, and signal processing , 1987, ASSP 35( 3):286-299. 被引量:1

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部