摘要
利用锥理论和非对称迭代方法,研究了在没有连续性和紧性条件的减算子方程解的存在唯一性,作为其应用着重讨论了非减算子方程解的存在唯一性,并给出了迭代序列收敛于解的误差估计,改进和推广了某些已知结果.
By using the cone theory and non-symmetry iteration method, we study the existence and uniqueness of solutions of decreasing operator equations without continuity and compactness conditions. For its application, we mainly study the existence and uniquer/ess of solutions of non-decreasing operator equations. And the iteration sequences which converge to solution of operator equations and the error estimates are also given. The results presented here improve and generalize some corresponding results.
出处
《西南民族大学学报(自然科学版)》
CAS
2007年第5期994-996,共3页
Journal of Southwest Minzu University(Natural Science Edition)
基金
河南省教委科研基金资助项目(200410483004)
商丘师范学院重点学科资助.
关键词
锥与半序
减算子
非对称迭代
不动点
nomal cone
decreasing operator
nen-symmetric iteration
fixed point