期刊文献+

改进的K近邻非参数回归在短时交通流量预测中的应用 被引量:5

Improved K nearest neighbor nonparametric regression and its application in short-term traffic flow forecasting
下载PDF
导出
摘要 针对现有K近邻非参数回归方法的局限,为了进一步提高算法的精度和速度,做出了两方面的改进:利用相关性理论选择状态向量和采用基于聚类分析的变K近邻搜索算法.用仿真实验验证了该方法的有效性,给出了仿真试验结果.实例研究结果表明,预测效果优于传统的非参数回归方法. To address the shortage of the K-nearest Neighbor Nonparametric Regression, and to improve the accuracy and computing speed of the proposed algorithm, a method for improving the accuracy and computing speed is presented: choosing state vector based on self-association or association analysis and using an improved variable K searching method based on clustering analysis, simulation experiments are conducted to examine the validity of the method. The calculated results show that this method can produce more exact forecasting performance than the traditional one.
出处 《长沙交通学院学报》 2007年第4期39-43,共5页 Journal of Changsha Communications University
基金 国家自然科学基金资助项目(50478088)
关键词 交通工程 短时交通流量预测 非参数回归 相关性分析 聚类分析 traffic engineering short-term traffic flow forecasting nonparametric regression association analysis clustering analysis
  • 相关文献

参考文献6

二级参考文献15

  • 1Smith B L, Demetsky M J. Traffic flow forecasting:comparison of modeling approaches[J ]. Journal of Transportation Engineering, 1997,123(4) :261-266. 被引量:1
  • 2Okutani I, Stephamedes Y J. Dynamic prediction of traffic volume through kalman filtering theory[J]. Transportation Research B, 1984,18B( 1 ) : 1-11. 被引量:1
  • 3Hobeika A G, Kim C K. Traffic-flow-prediction systems based on upstream traffic[C]. IEEE Proceeding of Vehicle Navigation and Information Systems Conference,1994. 345-350. 被引量:1
  • 4Voort M V D, Dougherty M, Watson S. Combining kohonen maps with ARIMA time series models to forecast traffic flow[ J ]. Transportation Research C, 1996,4 (5) :307-318. 被引量:1
  • 5Smith B L, Demetsky M J. Short-term traffic flow prediction: neural network approach [ J ]. Transportation Research Record, 1453:98-104. 被引量:1
  • 6Davis G A, Nihan N L. Nonparametrie regression and short-term freeway traffic forecasting [ J ]. Journal of Transportation Engineering, 1991,117 (4) : 178-188. 被引量:1
  • 7Freeman E H. An agent-orlented programming architecture for multi-agent constraint satisfaction problem[C].Proc. of 2nd IEEE Conference on Tools for Artificial Intelligence, 1990. 830-840. 被引量:1
  • 8Ivanova P I, Tagarev T D. Intelligent techniques for short-term traffic forecasting[C]. Preprints of 8th IFAC Symposium on Transportation Systems, 1997. 1478-1483. 被引量:1
  • 9Schaal Stefan. Nonparametric Regression for Learning. Proceeding of the Conference on Prerational Intelligence. Germany, 1994. 被引量:1
  • 10Altman N S. An introduction to kernel and nearest neighbor nonparametric regression. The American Statistician,1992, 46(3):175-185. 被引量:1

共引文献197

同被引文献45

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部