期刊文献+

映射作用下仿紧与亚紧性质的一些探讨 被引量:1

Discuss with Some Properties of Paracompact and Matacompact under Mapping Action
下载PDF
导出
摘要 文献中指出:设f:X→Y是空间X到空间Y上的完备映射,如果X1在X中Lindel f,则f(X1)在Y中Lindelf,如果Y1在Y中Lindelf,则f-1(Y1)在X中Lindelf.本文主要讨论了1-σ仿紧,2-σ仿紧,3-σ仿紧,α-仿紧,Aull-仿紧,强亚紧,亚紧,cp-仿紧,弱cp-仿紧,它们也有这样的性质. Reference is implied: f: X→Y is the prefect mapping from space X to space Y, if X1 is Lindelof in X, then f( X1 ) is lindelof in Y;if Y1 is lindelof, then f^-1(Y1) is lindelof in X. My article chiefly discussed that 1 - σ paracompact, 2 - σparacompact, 3-oparaeompaet,α- paraeompaet, Aull-paracompact, strongly matacompaet, mataeompaet, cp-paracompact, weakly cp - paracompact also have the properties.
作者 王媛 陈岩
出处 《吉林师范大学学报(自然科学版)》 2007年第4期82-83,共2页 Journal of Jilin Normal University:Natural Science Edition
关键词 1-σ仿紧 2-σ仿紧 3-σ仿紧 α-仿紧 Aull-仿紧 强亚紧 亚紧 cp-仿紧 弱cp-仿紧 1 - σ paracompact 2 - σ paracompact 3 - σ paracompact α - paracompaet Aull - paracompact strong matacompaet matacompact cp - paracompact weakly cp - paracompact
  • 相关文献

参考文献5

  • 1Arbangelski A V. Relative topological properties and relative topological space[J]. Topology Appl, 1996,70:87 - 99. 被引量:1
  • 2Engelking R. General Topology[ M ]. Warsaw : PWN, 1997. 被引量:1
  • 3Kaori Yamazaki,Aull - paracompactness and strong star-normality of subspaces in topological spaces[J]. Comment. Math. Univ. Carolinae 2004,45 (4): 743 - 747. 被引量:1
  • 4Ellse Grabner, Gary Grabner, Relationships among properties of relative paracompactness type[ J ]. Q and A in General Topology, 2004,22:91 -104. 被引量:1
  • 5康淑欣.映射作用下的一些相对拓扑性质[J].吉林师范大学学报(自然科学版),2006,27(3):77-78. 被引量:2

二级参考文献11

  • 1熊金城.点集拓扑讲义[M].北京:高等教育出版社,2001.196. 被引量:5
  • 2高国土.拓扑空间论[M].北京:科学出版社,2000. 被引量:5
  • 3Arhangel'skii A.V.Genedi H M M.Location of subspaces in spaces:relative rersions of compactes,Moscow Univ.Math Bull.1989,67~69. 被引量:1
  • 4Grothendieck A.Criteres de compacite dans les aspaces[J].Amer J Math,1952,(74):175~185. 被引量:1
  • 5Tkachuk V V.Fonctionnrls generaux[J].Vestnik Mosk Univ Ser Ⅰ Mat.Mekh,1982,(5):22~25. 被引量:1
  • 6Chigogidze A.Ch.On relative dimension,in:General Topology[A].Spaceof Functions and Dimension[C].Moscow:MGU,1985:67~117. 被引量:1
  • 7Arhangel'skii A.V.Genedi H.M.M.Beginnings of the theory of relative topological properties[M].General Topology.Spaces and Mappings(MGU,Moscow,11989):3~48. 被引量:1
  • 8Arhangel'skii A.V.Relative topogical propertiea and relative topological.space[J].Topology Appl,1996,(70):87~99. 被引量:1
  • 9Dow A,Vermeer J.An example concerning the property of a space being Lindelof in another[J].Topology Appl,1993,(51):255~260. 被引量:1
  • 10Arhangel'skii A.V.,Gordienko I YU.On relative normality and relative symmetrizability[J].Moscow Univ.Math.Bull.1995,50(3). 被引量:1

共引文献1

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部