期刊文献+

双稳系统的振动共振及特性分析 被引量:7

ANALYSIS OF VIBRATIONAL RESONANCE AND CHARACTERISTICS IN BISTABLE SYSTEMS
下载PDF
导出
摘要 基于非线性双稳系统受高、低两种不同频率作用的双时间尺度特性和谐波平衡法,解析地分析了双稳系统对低频信号响应的幅值与高频信号参数、系统参数之间的关系,表明系统响应的幅值随高频信号或系统参数的变化并非单调,而是存在着称之为振动共振的极大值。基于这些参数与共振曲线的关系,提出了共振状态下的频率特性。理论近似解析分析的结论与数值仿真计算的结果基本一致。 According to the double time scale characteristics of nonlinear bistable system subjected to the action of high and low frequency excitations simultanuously and by use of harmonic balance method, the relationship between the response amplitude of a bistable system due to low frequency signal and the parameters of the high frequency signal is analytic ally analyzed. It manifests that the change of system response amplitude due to high frequency signal or system parameters is not monotonous. The maximum value of response amplitude exists and is so called vibrational resonance. According to the relationship between parameters and resonance curve, the frequency characteristics of resonance are examined. The results of theoretical analysis are in agreement with those of numerical simulation.
作者 林敏 黄咏梅
出处 《振动与冲击》 EI CSCD 北大核心 2007年第12期151-153,共3页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(60671052 50675214)
关键词 双稳系统 振动共振 随机共振 共振因子 频率特性 bistable system vibrational resonance stochastic resonance resonance factor frequency characteristic
  • 相关文献

参考文献8

  • 1Gammaitoni L, Hanggi P, Jung P, Marchesoni F. Stochastic resonance[J]. Rev. Mod. Phys, 1998, 70(1 ) :223 -287. 被引量:1
  • 2Landa P S, McClintock P V E. Vibrational resonance[J].Phys. A: Math. Gen 2000, 33: IA33- L438. 被引量:1
  • 3Gittermann M. Bistable oscillator driven by two periodic fields [J]. Phys. A: Math. Gen. 2001,34:L355--L357. 被引量:1
  • 4Zaikin A A , Lopez L, Baltanas J P ,Kurths J, Sanjuan M A F. Vibrational resonance in a noise - induced structure [J]. Phys. Rev. E ,2002,66:011106--4. 被引量:1
  • 5Ullner E, Zaikin A, Gareia - ojalvo J, Bascones R, Kurlhs J. Vibrational resonance and vibrational propagation in excitable systems [J]. Physics Letters A,2003,312:348--354. 被引量:1
  • 6Baltanas J P , Lopez L, Blechman I I, Landa P S, Zaikin A, Kurths J, Sanjuan M A F. Experimental evidence, numerics, and theory of vibrational resonance in bistable systems [ J 1. Phys. Rev. E , 2003, 67: 066119-7. 被引量:1
  • 7Casado - Pascual J , Bahanas J P. Effects of additive noise on vibrational resonance in a bistable system[J].Phys. Rev. E 2004, 69: 046108--7. 被引量:1
  • 8Blechman I I. Vibrational Mechanics. 2000, World Scientific, Singapore. 被引量:1

同被引文献89

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部