期刊文献+

基于粒子群优化算法的高阶累积量滤波器

High-order cumulant adaptive filter based on particle swarm optimization
下载PDF
导出
摘要 基于高阶累积量(HOC)的自适应滤波器能够滤除高斯噪声或其它具有对称概率分布函数的噪声,其解法一般采用的是梯度搜索法,但是梯度搜索过程难以避免局部收敛而且计算复杂.粒子群优化算法(PSO)具有算法简洁,易于实现,且不需要梯度信息等优势.使用粒子群优化算法求解高阶累积量自适应滤波器系数优化问题,为滤波器参数的优化提供了一种新的思路.仿真结果表明,使用PSO优化算法求解自适应滤波器系数能获得更高的精度.同时PSO算法受系统跃变的影响较小,因此它在求解非平稳过程模型系统时具有一定的优势. A high-order cumulant-based (HOC) adaptive filter can limit Gauss noise or other noise with symmetric probability distribution function. Current HOC-based adaptive filter commonly adopts the gradient search method, but it is hard to avoid local convergence and complexity with the gradient search process. Particle swarm optimization (PSO) is simple and easy to implement, and with no gradient information and with other advantages, which can be used to solve many complex problems. Using the PSO algorithm to optimize the filter coefficients was proposed as a new method, considering HOC-based coefficients adjustment of adaptive filter as an optimization problem. The simulation results show that using the PSO can give higher precision in HOC based coefficients optimization of adaptive filter. In addition, the PSO algorithm is relatively little affected by system jump, which has a certain advantage in the non-stationary process model.
出处 《山东大学学报(工学版)》 CAS 2007年第6期15-19,共5页 Journal of Shandong University(Engineering Science)
基金 山东省自然科学基金项目(Y2003G01) 山东省教育厅科技计划项目(J06P53)
关键词 粒子群优化算法 高阶累计量 自适应滤波器 PSO algorithm high-order cumulant adaptive filter
  • 相关文献

参考文献8

  • 1张贤达著..现代信号处理[M].北京:清华大学出版社,1995:590.
  • 2KENNEDY J, EBERHART R C. Particle swarm optimization [C]// PERTH W A. Proceedings of the IEEE Congress on Neural Networks. Australia: 1995: 1942-1945. 被引量:1
  • 3CLERC M, KENNEDY J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Trans on Evolutionary Computation, 2002, 6( 1 ) : 58-73. 被引量:1
  • 4LIANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions [ J ]. IEEE Transactions on Evolutionary Computation, 2006, 10(3) :281-295. 被引量:1
  • 5SHIN D C, NIKIAS C L. Adaptive interference canceler for narrowband/wideband interferences using higher-order statistics [J]. IEEE Trans Signal Processing, 1994, 42(10):2715- 2728. 被引量:1
  • 6CHEN Y H, LOU J J. A new higher-order cumulant-based criterion for adaptive canceling[ J]. IEEE and Propagation Society International Symposium, 1997(4) :2434-2437. 被引量:1
  • 7高鹰,谢胜利.一种基于三阶累积量的准则及自适应滤波算法[J].电子与信息学报,2002,24(9):1197-1201. 被引量:6
  • 8TOMMY W S, TAN Hong-zhou, FEI Gou. Third-order cumulant RLS algorithm for nonminimum ARMA systems identification[J]. Signal Processing, 1997, 61(1):23-38. 被引量:1

二级参考文献9

  • 1[1]B. Friedlander, B. Porat, Asymptotically optimal estimation of MA and ARMA parameters ofnon-Gaussian processed from high-order moments, IEEE Trans. on Automat. Contr., 1993,35(1), 25-37. 被引量:1
  • 2[2]H.H. Chiang, C. L. Nikias, A new method for adaptive time delay estimation for non-Gasussiansignals, IEEE Trans. on Acoust., Speech, Signal Processing, 1990, 38(2), 209-219. 被引量:1
  • 3[3]C.Y. Chi, W. J. Chang, New higher-order statistics based criterion for the design of linearprediction error filters, Proc. IEEE Signal Processing Workshop on Higher-Order Statistics,South Lake Tahoe, CA,June 7, 1993, 106-110. 被引量:1
  • 4[4]C.Y. Chi, W. J. Chang, C. Febg, A new algorithm for the design of linear prediction error filtersusing cumulant-based MSE criterion, IEEE Trans. on SP, 1994, 42(10), 2876-2880. 被引量:1
  • 5[5]D.C. Shin, C. L. Nikias, Adaptive interference canceler for narrowband/wideband interferencesusing higher-order statistics, IEEE Trans. on SP, 1994, 42(10), 2715-2728. 被引量:1
  • 6[6]Yuan-Hwang Chen, Jyh-Jeng Lou, A new higher-order cumulant-based criterion for adaptiveinterference cancelling, IEEE Antennas and Propagation Society International Symposium, NewYork, USA, 1997, Vol.4, 2434-2437. 被引量:1
  • 7[7]W. S. Chow, Gou Fei, Siu-yeung Cho, Higher order cumulants-based least squares fornonminimum-phase systems identification. IEEE Trans. on Industrial Electronics, 1997, 44(5),707-716. 被引量:1
  • 8[8]D.G. Luenberger, Linear and Nonlinear Programming, MA: Addison-Wesley, 1984, Chapter 2. 被引量:1
  • 9[9]C.L. Nikias, A. Petropuou, Higher-Order Spectra Analysis, A Nonlinear Signal Processing Framework, Englewood Cliffs, NJ: Prentice Hall, 1989,124-125. 被引量:1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部