期刊文献+

一种基于单似然检验的高光谱图像小目标检测器 被引量:12

A Small-Target Detector Based on Single Likelihood Test for Hyperspectral Imagery
原文传递
导出
摘要 针对背景和目标的先验光谱特征未知的条件,给出一种基于单似然检验的高光谱图像小目标检测器。小目标相对于背景的低概率性使得高光谱图像数据对目标光谱信号的矩特征几乎不施加约束,可在最大熵条件下将广义似然比检验简化为对背景似然的单似然检验;利用全部数据样本建立无参估计模型以充分利用样本信息,从而得到基于单似然检验的高光谱图像小目标检测器。该检测器避免了统计模型误差和不明确物理含义特征对实际高光谱图像数据检测带来的影响。使用可见光/近红外波段机载I型实用型模块化成像光谱仪(OMIS-I)高光谱图像进行了实验,实验结果及相应理论分析表明该算法可有效检测高光谱图像中的空间低概率目标。 A small-target detector based on single likelihood test for hyperspectral imagery is presented to detect target when there is no a priori spectral signal of background and target, which presume the maximum entropy character of target. Because of the low-probability occurrence of target compared with that of background, it can be assumed that there is no constraint by hyperspectral imagery data on the moments of target signal. Accordingly, the generalize likelihood ratio test can be simplified to test background likelihood solely under maximum entropy of target. Then, nonparametric estimation is utilized to obtain the probability density of background, which can extract information from samples more effectively. The single likelihood test based detector weakens the effect of statistic model discrepancy and avoids effect of implicit physical meaning on detection. Theoretic analysis and the experimental results on visible/near-infrared OMIS-I hyperspectral imagery verify that these algorithms are effective to detect spatial low-probability targets.
出处 《光学学报》 EI CAS CSCD 北大核心 2007年第12期2155-2162,共8页 Acta Optica Sinica
基金 国家自然科学基金重点项目(60634030) 国家自然科学基金(60475004 60602056 60372085) 航空科学基金(2006ZC53037) 遥感科学国家重点实验室开放基金(SK050013) 教育部新世纪人才基金(NCET-04-0816) 广东省自然科学基金团队项目(04205783)资助课题
关键词 信息处理技术 高光谱图像处理 目标检测 单似然检验 information processing technology hyperspectral imagery processing target detection single likelihood test
  • 相关文献

参考文献19

  • 1David Landgrebe. Hyperspectral image data analysis[J]. IEEE Signal Processing Magazine, 2002, 19(1): 17-28 被引量:1
  • 2赵杰文,张海东,刘木华.简化苹果糖度预测模型的近红外光谱预处理方法[J].光学学报,2006,26(1):136-140. 被引量:55
  • 3S. M. Bergman. The utility of hyperspectral data to detect and discriminate actual and decoy target vehicles[R]. AD report A327453, 1996 被引量:1
  • 4D. Stein, Jon Schoonmaker, Eric Coolbaugh. Hyperspectral imaging for intelligence, surveillance, and reconnaissance[R]. AD report A434124, 2001 被引量:1
  • 5Capt Peterson Erin D. Surface and buried landmine scene generation and validation using the digital imaging and remote sensing image generation (DIRSIG) model[R]. AD report A424769, 2004 被引量:1
  • 6Office of the Secretary of Defense, U. S. Department of Defense. Unmanned Aircraft Systems Roadmap 2005-2030[R]. 2005. 47-59 被引量:1
  • 7X. L. Yu, I. S. Reed, A. D. Stocker. Comparative performance analysis of adaptive multispectral detectors[J]. IEEE Transactions on Signal Processing, 1993, 41(8): 2639-2656 被引量:1
  • 8贺霖,潘泉,赵永强,郑纪伟,魏坤.基于波段子集特征融合的高光谱图像异常检测[J].光子学报,2005,34(11):1752-1755. 被引量:19
  • 9C. I. Chang, S. S. Chiang. Anomaly detection and classification for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(6): 1314-1325 被引量:1
  • 10Chein-I Chang, Shao-Shan Chiang, Irving W. Ginsberg. Anomaly detection in hyperspectral imagery[C]. Proc. SPIE, 2001, 4383: 43-50 被引量:1

二级参考文献52

  • 1柴饶军,马彩文.图像序列中目标关键帧快速搜索算法[J].光子学报,2004,33(10):1233-1235. 被引量:3
  • 2唐自力,马彩文,刘波,单金玲,陈良红.单站光测图像确定空间目标三维姿态[J].光子学报,2004,33(12):1480-1485. 被引量:37
  • 3董小鹏.采用Tm光纤光源的甲烷气体相关光谱检测[J].中国激光,1994,21(10):789-794. 被引量:3
  • 4Svante Wold, Henrik Antti, Fredrik Lindgren et al.. Orthogonal signal correction of near-infrared spectra[J]. Chemometrics and Intelligent Laboratory Systems, 1998, 44:175-185. 被引量:1
  • 5Jonas Sjoblom, Olof Svensson, Mats Josefson et al.. An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectra [J]. Chemometrics and Intelligent Laboratory Systems, 1998, 44:229-244. 被引量:1
  • 6Claus A. Andersson. Direct orthogonalization[J]. Chemometrics and Intelligent Laboratory Systems, 1999, 47:51-63. 被引量:1
  • 7Tom Fearn. On orthogonal signal correction[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 50:47-52. 被引量:1
  • 8Johan A. Westerhuis, Sijmen de Jong, Age K. Smilde. Direct orthogonal signal correction[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 56: 13-25. 被引量:1
  • 9Robert N. Feudale, Huwei Tan, Steven D. Brown. Piecewise orthogonal signal eorreetion[J]. Chemometrics and Intelligent Laboratory Systems, 2002, 63:129-138. 被引量:1
  • 10Héctor C. Goicoechea, Alejandro C. Olivieri. A comparison of orthogonal signal correction and net analyte preprocessing methods. Theoretical and experimental study[J]. Ckemometrics and Intelligent Laboratory Systems, 2001, 56:73-81. 被引量:1

共引文献117

同被引文献129

引证文献12

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部