期刊文献+

多线性奇异积分和分数次积分的有界性

The Boundedness of Mulitilinear Singular and Fractional Integrals
下载PDF
导出
摘要 奇异积分和分数次积分是近代调和分析中的重要算子,因而研究它在各种空间的有界性就很有意义.丁勇等人证明了多线性奇异积分与分数次积分从Lp(Rn)到Lq(Rn)的有界性,笔者把他的结果推广到了Helz空间,主要讨论了多线性奇异和分数次积分从.qα,1p(Rn)到.Kαq2,p(Rn)的有界性,使得关于多线性奇异和分数次积分的有界性理论更加完善. The singular integral and the fractional integral are very important operators. So it is very significant to research their boundedness in various function spaces. Ding yong and so on have proved the boundedness of mulitilinear singular and fractional intergrals from L^p ( R^n ) to L^q ( R^n ). In this paper the anther generalised his results to the Herz space, and studied the boundedness of this operater from.q1^α,p ( R^n ) to Kq2^α,p ( R^n ) . The shows make the boundedness theory of mulitilinear singular and fractional integrals more complete.
作者 牛采银
出处 《淮阴工学院学报》 CAS 2007年第5期10-14,共5页 Journal of Huaiyin Institute of Technology
关键词 多线性 奇异和分数次积分 HERZ空间 mulitilinear singular and fractional integrals Herz space
  • 相关文献

参考文献2

二级参考文献42

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部