摘要
Hecke群为PSL(2,R)的一类重要的离散子群,它们在研究Dirichlet级数起了重要的作用。Hecke群的有限指数的子群(称这些子群为Hecke群的同余子群)同样在研究Dirichlet级数发挥了重要作用,调查这些子群的结构是非常必要的。这些子群中,人们特别关注那些正规的同余子群。对于Hecke群H(q),级为2的幂的主同余正规子群的结构将会被调查。
Hecke groups are an important class of discrete subgroups of PSL (2, R), which play an important role in studying Dirichlet series. Subgroups with finite index of a Hecke group, which are called congruence subgroup, are often used in researching Dirichlet series, so it is necessary to investigate their structure. Especially, people pay much attention to those normal subgroup. For the Hecke group H (√q), the principal subgroups of level a power of 2 are discussed.
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第6期1-4,共4页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家自然科学基金资助项目(10571180)
广东省自然科学基金资助项目(04009801)
关键词
Hecke群
主同余子群
同余子群
Hecke group
principal congruence subgroup
congruence subgroup