摘要
本文证明了下面主要结果定理1设G是n-可解群,π是一些素数之集,若对任意p∈π∩π(G),(p,n(1-n))=1,则G的π-Hal子群的个数r=k1k2…kt,每ki≡1(modp),某p∈π,且每ki整除G的一个主因子.定理3设G是有限群,H是G的n-幂零π-Hal子群,若M是G的π-子群,p(|M|,n(1-n))=1,则存在g∈G使Mg≤H.
In this paper, we prove the following theorems: Theorem 1 Let G be a n solvable group, π be a set of promes. If (p,n(1-n))=1 for all p∈π∩π(G) , then the number of Hall π subgroups of G is r=k 1k 2…k t,k i≡1 (mod p ). for some p∈π and k i divides a chief factor of G. Theorem 3 Let G be a finite group, H be a n nilpotent Hall π subgroup of G. If M is a π subgroup of G With (|M|,n(1-n))=1 , then there exists g∈G such that M g≤H.
出处
《数学杂志》
CSCD
1997年第4期445-449,共5页
Journal of Mathematics