摘要
本文证明了形如A=B+C的算子,其中B为线性算子,C为-凹算子,不动点的存在唯一及迭代收敛性,并将所获结果应用于常微分方程、偏微分方程和积分方程,得到了新的结论.
In this paper we prove the existence, uniqueness and iteration of the positive fixed point of the operator A= B+C, where B is a positive linear operator with the spectral radius r(B) < 1, C is a -concave increasing operator, and give some applications to the ordinary differential, partial differential and integral equation, obtain some new conclusions.
出处
《应用数学学报》
CSCD
北大核心
1997年第4期609-615,共7页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金
山西省青年科学基金