期刊文献+

基于信号分形与支持向量机的点焊检测方法 被引量:4

Detection method of spot welding based on fractal and support vector machine
下载PDF
导出
摘要 鉴于分形维数对数据样本集复杂程度的定量描述特点及支持向量机在小样本集合分类和回归方面所具有的显著优势,采用信号数据序列的分形维数作为特征值,提出一种基于信号分形维数及支持向量机的点焊信号检测方法。分别对点焊飞溅缺陷和熔核尺寸缺陷建立两类支持向量机检测模型,构成支持向量机阵列,利用该阵列模型进行点焊飞溅和小尺寸熔核两种缺陷的综合检测。结果表明,该阵列对点焊缺陷的无损检测是比较精确的,能较好地无损检测到点焊过程中飞溅及小尺寸熔核两种缺陷。为点焊的无损检测提供了一种新的方法。 Because of characteristic of fractal dimension which present quantitatively describing of complexity of a sample data series and remarkable advantage of support vector machine(SVM) in small sample classification and regression, fractal dimension of signal data series is adopted as eigenvectors,and a novel detection method based on fractal and SVM is presented.Two models based on SVM are constructed.One is about flatters of spot welding and the other is about defect of nugget size.A array of SVM is consist of these two models.The array is used to detect the two defects synchronously.It is shows that this new method fits for nondestructive detection of spot welding from analysis of experiment results.This array of SVM can detect the two defects of flatters and the little nugget size better in process of spot welding.
出处 《焊接学报》 EI CAS CSCD 北大核心 2007年第12期38-42,共5页 Transactions of The China Welding Institution
基金 国家自然科学基金资助项目(50575159) 天津市应用基础研究计划项目(06YFJMJC03400)
关键词 分形 支持向量机 检测 点焊 飞溅 fractal support vectors machine detection spot welding flatter
  • 相关文献

参考文献12

  • 1Merller W S, Zhang L. Recent derelopment in aluminun alloys for the automotire industry [ J ]. Materials Science and Engineering A, 2001, 280: 37 - 49. 被引量:1
  • 2张崧,彭光俊,史红.超声法检测金属薄板点焊接头质量研究[J].哈尔滨工业大学学报,2003,35(11):1392-1394. 被引量:20
  • 3Vapnike V N . The nature of statistical learning [M]. New York: Springer, 1998. 被引量:1
  • 4Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation and signal processing[ C ]//Adv Neural Infor Proc Syst. Cambride: MIT Press, 1997 : 281 - 287. 被引量:1
  • 5边肇基.模式识别[M].北京:清华大学出版社,2000.. 被引量:5
  • 6Po Yhonen S, Negrea M, Arkk A. Fault diagnostics of an electrical machine with multiple support vector classifiers[ C] ff Proceedings of 2002 IEEE International Symposium on Intelligent Control. Vancouver, 2002. 被引量:1
  • 7Gyuon I, Weston J, Barnhill S. Gene selection for cancer classification using support vector machines[J]. Machine Learning, 2002, 46 (1-3): 389-422. 被引量:1
  • 8何学文,赵海鸣.支持向量机及其在机械故障诊断中的应用[J].中南大学学报(自然科学版),2005,36(1):97-101. 被引量:46
  • 9Amari S, Wu S. Improving support vector machine classifiers by modifying kernel functions[J]. Neural Networks, 1999,12(6):783-789. 被引量:1
  • 10Burges C J C. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery, 1998, 2(2): 8-34. 被引量:1

二级参考文献14

共引文献2334

同被引文献74

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部