期刊文献+

微粒群算法在产品组件布局设计中的应用 被引量:2

Particle swarm optimization applied in the product component layout design
下载PDF
导出
摘要 提出了一种基于微粒群算法的自适应优化布局求解算法,该算法以组件特征模型为基础,在微粒群算法中引入人机交互技术,从整体上自动优化布局方案,以满足约束条件为目标。并以手机组件的布局求解为例,对该算法进行了验证。理论和实例分析表明,该算法能有效地生成多个手机组件布局方案。 This paper proposed a self-adapting algorithm using particle swarm optimization to deal with the constrained layout optimization problems. This algorithm based on component feature model, integrating human-computer interactive technique into Particle Swarm Optimization (PSO), can solve the problem more efficiently. And the effectiveness of this method is verified in the layout problem of cell-phone components. Theoretical and case analysis show that this improved algorithm can create multiple layout schemes of cell-phone components quickly and eflqciently.
作者 袁希 刘弘
出处 《计算机应用》 CSCD 北大核心 2007年第9期2349-2352,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(69975010 60374054) 山东省自然科学基金资助项目(Y2003G01 Z2006G09)
关键词 微粒群算法 布局 人机交互 Particle Swarm Optimization (PSO) layout design human-computer interaction
  • 相关文献

参考文献10

二级参考文献43

共引文献123

同被引文献19

  • 1CASTRO J R, CASTILLO O, MELIN P, et al. Intelligent control using an interval type-2 fuzzy neural network with a hybrid learning algorithm[ C ] //Proc of IEEE International Conference on Fuzzy Systems. Piscataway, NJ, USA : IEEE, 2008 : 893 - 900. 被引量:1
  • 2CLERC M, KENEDY J. The particle swarm: explosion, stability, and convergence in a multidimensional complex space [ J ]. IEEE Trans on Evolutionary Computation, 2002, 6 ( 1 ) : 58 -73. 被引量:1
  • 3NEWAGY F A, FAHMY Y A, E1-SOUDANI M M S. Designing near Shannon limit LDPC codes using particle swarm [ C ] //Proc of International Conference on Telecommunications & MICC. Piscataway, NJ, USA : IEEE, 2007 : 119 - 123. 被引量:1
  • 4KENNEDY J, EBERHART R . Particle swarm optimization [ C ]// Proceeding of IEEE International Conference on Neural Networks. Piscataway, NJ, USA : IEEE, 1995 : 1942 - 1948. 被引量:1
  • 5DORA E, CLERC M , SIARRY P. A multi-swarm PSO using charged particles in a partitioned search space for continuous optimization[J]. Computational Optimization and Applications, 2011,11:449 -453. 被引量:1
  • 6DENG Y M, ZHENG D, LU X J. Injection moulding optimisation of multi-class design variables using a PSO algorithm[ J ]. The International Journal of Advanced Manufacturing Technology ,2008,39 (7) :690 - 698. 被引量:1
  • 7OSTADRAHIMI L, MARINO M A , AFSHAR A. Multi-reservoir operation rules:Multi-swarm PSO-based optimization approach [ J ]. Water Resources Management,2012,26 (2) :407 - 427. 被引量:1
  • 8LI YM, CHEN X. A New stochastic PSO technique for neural network Training [ J ] Lecture Notes in Computer Science, 2006, 3971 : 564 - 569. 被引量:1
  • 9YU C JU, S G HAN, F, et al. An improved approach combining random PSO with BP for feedforward neural networks [ J ]. Lecture Notes in Computer Science, 2009,5855:361 -368. 被引量:1
  • 10LIT, GUO L B, WANG Y M, et al. Research on logging evaluation of reservoir contamination based on PSO-BP neural network [ J]. Lecture Notes in Computer Science, 2009,5552:839 - 844. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部