摘要
研究了当独立决定条件ⅡA(S1)弱化为ⅡA(S2)时,在非二元性选择环境下,选择函数的最小决定集及其唯一存在性.证明了在k-集可行性条件、无约束域条件、Pareto优化准则和独立决定条件ⅡA(S2)下,选择函数存在唯一的最小否定集和最小决定集.进而证明了在上述条件下,选择函数满足独立决定条件ⅡA(S2)的充分必要条件不是独裁者,而是寡头控制.
The minimal determining set of social choice function and its unique existence condition were investigated under non-binary choice and the condition that independent decisiveness condition IIA(S1 ) becomes independent decisiveness condition IIA(S2). It is proven that the unique minimal determining set and minimal veto set of the choice function exist under the conditions that the choice function satisfies the k-set feasible condition, the unrestricted domain, the Pareto optimality and the independent decisiveness condition IIA (S2 ), and the choice function satisfies the independent decisiveness condition IIA( S2) under the above-mentioned conditions if and only if it is oligarchic but not dictatorial.
出处
《西南交通大学学报》
EI
CSCD
北大核心
2007年第6期763-768,共6页
Journal of Southwest Jiaotong University
基金
国家自然科学基金资助项目(70771093
70371026)
西南科技大学博士基金资助项目(07ZX0112)
关键词
最小决定集
非二元性选择函数
寡头控制
独立决定
minimal determining set
non-binary choice function
oligarchic
independent decisiveness