期刊文献+

解非线性振动方程的两种摄动法的比较 被引量:2

Comparison of Two Perturbation Methods for Nonlinear Oscillation Equations
下载PDF
导出
摘要 首先介绍了解非线性振动方程的L-P摄动法和Krylov展开法,然后对两种方法进行了比较.比较可知,对恢复力是位移奇函数的单自由度保守振动系统Krylov展开法适用范围比L-P摄动法广泛;对恢复力是位移一般函数的单自由度保守振动系统两者都仅适用于弱非线性系统.两个典型例子验证了结论的正确性. The L-P perturbation method and Krylov method are reviewed firstly, and then the comparison between them is completed. For the odd nonlinear oscillation systems, the Krylov method is better than L-P perturbation method. On the other hand, for the case of general nonlinear oscillation systems, both L-P perturbation method and Krylov method are only valid for small amplitude. Two typical example's confirm that the conclusion presented in this paper is correct.
出处 《北华大学学报(自然科学版)》 CAS 2007年第6期488-492,共5页 Journal of Beihua University(Natural Science)
关键词 摄动法 奇非线性振动系统 一般非线性振动系统 Perturbation methods Odd nonlinear oscillation systems General nonlinear oscillation systems
  • 相关文献

参考文献7

  • 1[1]J Kevorkian,JD Cole.Perturbation Methods in Applied Mathematics[M].New York:Springer,1981. 被引量:1
  • 2陈予恕著..非线性振动[M].北京:高等教育出版社,2002:390.
  • 3[3]JB Marion.Classical Dynamics of Particles and Systems[M].Second Edition.New York:Academic,1970. 被引量:1
  • 4[4]WT Thomson.Theory of Vibration with Applications[M].New Jersey:Prentice-Hall,1972. 被引量:1
  • 5周纪卿,朱因远..非线性振动[M].西安:西安交通大学出版社,1998:423.
  • 6[6]BS Wu,CW Lim,PS Li.A Generalization of the Senator-Bapat Method for Certain Strongly Nonlinear Oscillators[J].Physics Letters A,2005,341:164-169. 被引量:1
  • 7[7]WP Sun,BS Wu,CW Lim.A Modified Lindstedt Poincaré Method for Strongly Mixed-parity Nonlinear Oscillators[J].Journal of Computational and Nonlinear Dynamics,2007,2(2):141-145. 被引量:1

同被引文献12

  • 1夏永旭.周期集中载荷作用下球形扁壳的非线性振动问题[J].应用力学学报,1989,6(4):66-72. 被引量:2
  • 2J J Stoker. Nonlinear Vibrations in Mechanical and Electrical Systems [ M]. New York:Inter-science, 1950. 被引量:1
  • 3N N Bogliubov, Yu A Mitropolsky. Asymptotic Methods in the Theory of Nonlinear Oscillations [ M ]. New York: Gordon and Breach, 1961. 被引量:1
  • 4A H Nayfeh. Introduction to Perturbation Techniques [ M]. New York:Wiley Inter-science,19$1. 被引量:1
  • 5Y K Cheung, S H Chen, S L Lau. A Modified Lindstedt-Poincare Method for Certain Strongly Non-linear Oscillators [ J ]. International Journal of Non-Linear Mechanics, 1991,26:367-378. 被引量:1
  • 6M Senator, C N Bapat. A Perturbation Technique that Works Even When the Non-linearity is not Small [ J ]. Journal of Sound and Vibration, 1993,164 : 1-27. 被引量:1
  • 7P Amore,A Aranda. Presenting a New Method for the Solution of Nonlinear Problems [J]. Physics Letters A,2003,316:218-225. 被引量:1
  • 8B S Wu,C W Lim,P S Li. A Generalization of the Senator-Bapat Method for Certain Strongly Nonlinear Oscillators[J]. Physics Letters A,2005,341 : 164-169. 被引量:1
  • 9Stevenson P M. Optimized Perturbation Theory [ J]. Physics Review D, 1981,23:2916-2944. 被引量:1
  • 10P Amore, A Aranda, R Saenz, et al. Systematic Perturbation Calculation of Integrals with Applications to Physics [ J ]. Physics Review E,2005,71:016704. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部