期刊文献+

面向分类去噪问题的模糊支持向量机新算法 被引量:5

New Algorithm of Fuzzy Support Vector Machine for Classification with Outliers
下载PDF
导出
摘要 针对面向分类去噪问题,提出了一种新的模糊支持向量机算法(ν-FSVM),并给出了通过无穷次连续可微函数建立模糊关系的方法.该方法能对训练集中的点自动赋予模糊关系,并且对带有噪声的点和孤立的点赋予较小的模糊关系.与传统的ν支持向量机比较,该算法通过建立训练集的模糊关系,能够大大减小噪声对分类的影响,从而提高分类精度,减少误差. A fuzzy support vector machine learning approach, namely ν-FSVM is presented to eliminate classification noise. And the fuzzy relations among the training data points are also created with an infinite continue differentiable function, which enables to automatically assign the fuzzy relationships to the training data points, and assign small fuzzy relationships to the points with noises or outliers. Comparing with the traditional ν-support vector machine, the experimental results on benchmark datasets show that the presented approach reduces the outlier effects to improve the classification performance.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第12期1414-1417,共4页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(10671153)
关键词 支持向量机 分类 ν支持向量机 support vector machine classification ν-support vector machine
  • 相关文献

参考文献10

  • 1Boser B E, Guyon I, Vapnik V. A training algorithm for optimal margin classifiers[C]//Proc Fifth Ann Workshop Computational Learning Theory. New York: ACM Press, 1992 : 144-152. 被引量:1
  • 2Cao L J, Lee H P, Chong W K. Modified support vector novelty detector using training data with outliers [J]. Pattern Recognition Letters, 2003, 24(14) : 2479 -2487. 被引量:1
  • 3Inoue T, Abe S. Fuzzy support vector machines for pattern classilcation[C] // Proceedings of the International Joint Conference on Neural Networks. Piscataway: IEEE, 2001: 1449-1454. 被引量:1
  • 4Lin C F, Wang S D, Fuzzy support vector machines [J]. IEEE Trans Neural Networks, 2002, 13 (2): 464-471. 被引量:1
  • 5Lin C F, Wang S D. Training algorithms for fuzzy support vector machines with noisy data[J].Pattern Recognition Letters, 2004, 25(14):1647-1656. 被引量:1
  • 6Chen J H, Chen C S. Fuzzy kernel perceptron[J]. IEEE Trans Neural Networks, 2002, 13 (6):1364- 1373. 被引量:1
  • 7Mill J, Inoue A. An application of fuzzy support vectors[C]//Proceedings of the 22nd North American Fuzzy Information Processing Society. Piscataway: IEEE, 2003: 302-306. 被引量:1
  • 8Keller J M, Hunt D J. Incorporating fuzzy membership functions into the perception algorithm[J]. IEEE Trans Patt Anal Math Intell, 1985, 7(6).. 693-699. 被引量:1
  • 9Tsujinishi D, Abe S. Fuzzy least squares support vector machines [C]//Proceedings of the International Joint Conference on Neural Networks. Piscataway:IEEE, 2003:1599-1604. 被引量:1
  • 10Shawe-Taylor J, Cristianini N. Kernel methods for pattern analysis[M]. Cambridge, UK: Cambridge University Press, 2004. 被引量:1

同被引文献53

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部