期刊文献+

数据挖掘中GridLOF算法的研究与改进

Research and Improvement of GridLOF Algorithm in Data Mining
下载PDF
导出
摘要 通常那些与数据集的一般行为或模型不一致的数据对象,可能包含某些重要的隐藏信息。在分析了基于单元网格的局部孤立因子的孤立点挖掘算法(GridLOF)的基础上,做出了相应的改进,提出了基于相邻网格密度因子的孤立点挖掘算法。 There are some data objects that are not coincide with the the data set,they may contain some important hidden information.Based on the analysis of GridLOF outlier mining algorithms,presents density factor of neighboring grid cells outlier mining algorithm,and makes some improvement.
出处 《现代计算机》 2007年第11期29-31,共3页 Modern Computer
关键词 数据仓库 数据挖掘 孤立点检测 Data Warehouse Data Mining Outliers Detection
  • 相关文献

参考文献9

二级参考文献29

  • 1黄万华,陆声链,林士敏.孤立点挖掘在教务管理中的应用研究[J].广西科学院学报,2004,20(3):155-158. 被引量:2
  • 2Barnett V, et al. Outliers in Statistical Data[J]. John Wiley,1994. 被引量:1
  • 3T Johnson, I Kwok, R Ng. Fast Computation of 2-dimensional Depth Contours[C]. Proc. 4^th Int. Conf. on Knowledge Discoveryand Data Mining, 1998.224-228. 被引量:1
  • 4M Joshi, R Agarwal, V Kumar. Mining Needles in a Haystack:Classifying Rare Classes Via Two-phase Rule Induction[C].ACM SIGMOD Conference Proceedings,2001.91-102. 被引量:1
  • 5E M Knorr, R T Ng.Algorithms for Mining Distance-based Outliers in Large Datasets[ C ]. Proc. 24^th Int. Conf. on Very Large Data Bases. New York, NY, 1998. 392-403. 被引量:1
  • 6S Ramaswamy, R Rastogi, S Kyuseok. Efficient Algorithms for Mining Outliers from Large Data Sets[ C ]. Proc. ACM SIGMOD Int. Conf. on Management of Data, 2000. 被引量:1
  • 7D Hawkins.Identification of Outliers[M]. Chapman and Hall,London, 1980. 被引量:1
  • 8H Samet. The Design and Analysis of Spatial Data Strueturesl[J]. Addison-Wesley, 1990. 被引量:1
  • 9M.M. Breunin, H. P. Kriegel, R. T. Ng, et al. LOF:Identifying density-based local outliers. SIGMOD2000, Dallas,Texas, 2000. 被引量:1
  • 10Jin Wen, K. H. Tung Anthony, Han Jiawei. Mining top-n local outliers in large databases. The 7th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining, San Francisco, CA, 2001. 被引量:1

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部