期刊文献+

一种基于单纯形法的随机微粒群算法 被引量:5

A Stochastic Particle Swarm Optimization Algorithm Based on the Nonlinear Simplex Method
下载PDF
导出
摘要 以保证全局收敛的随机微粒群算法SPSO为基础,本文提出了一种改进的随机微粒群算法——SM-SPSO。该方法是在SPSO的进化过程中,以单纯形法所产生的最优个体来代替SPSO中停止的微粒,参与下一代的群体进化。这样既可以利用单纯形法的收敛快速性,又可以利用SPSO的全局收敛性。通过对两个多峰的测试函数进行仿真,其结果表明在搜索空间维数相同的情况下,SM-SPSO的收敛率及收敛速度均大大优于SPSO。 Based on the stochastic particle swarm optimization algorithm that guarantees global convergence, an improved stochastic particle swarm optimization algorithm named SM-SPSO is proposed. During the evolution of SPSO, the best particle produced by the simplex method substitutes for the stopping particle, and takes part in the evolution of the next generation. Thus, both the characteristics of speedy convergence of the nonlinear simplex method and the global convergence of the stochastic particle swarm optimization algorithm are used. Through the experiments of two multi-modal test functions, the result of simulation proves that the speed of convergence and the rate of convergence for SM-SPSO are better than SPSO on the same dimension of search space.
出处 《计算机工程与科学》 CSCD 2007年第1期90-93,共4页 Computer Engineering & Science
基金 教育部重点科技项目(204018)
关键词 随机微粒群算法 单纯形法 全局优化 stochastic particle swarm optimization simplex method global optimization
  • 相关文献

参考文献8

  • 1Kennedy J,Eberhart R C.Particle Swarm Optimization[A].Proc IEEE Int'l Conf on Neural Networks[C].1995.1942-1948. 被引量:1
  • 2Yoshida H,Kawata K,Fukuyama Y,et al.A Particle Swarm Optimization for Reactive Power and Voltage Control Considering Voltage Stability[A].Proc of the Int'l Conf on Intelligent System Application to Power Systems[C].1999.117-121. 被引量:1
  • 3Van den Bergh F.An Analysis of Particle Swarm Optimizers:[Ph D Thesis][D].South Africa:Department of Comouter Science,University of Pretoria,2001. 被引量:1
  • 4曾建潮等编著..微粒群算法[M].北京:科学出版社,2004:157.
  • 5Van den Bergh F,Engelbrecht A.A New Locally Convergent Particle Swarm Optimization[A].2002 IEEE Int'l Conf on Systems,Man,and Cybernetics[C].2002. 被引量:1
  • 6Van den Bergh F,Engelbrecht A.Using Neighborhood with the Guaranteed Convergence PSO[A].2003 IEEE Swarm Intelligence Symp[C].2003.235-242. 被引量:1
  • 7曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:158
  • 8王凌著..智能优化算法及其应用[M].北京:清华大学出版社,2001:230.

二级参考文献7

  • 1P N Suganthan. Particle swarm optimiser with neighbourhood operator. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1958~1962 被引量:1
  • 2E Ozcan, C Mohan. Particle swarm optimization: Surfing the waves. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1939~1944 被引量:1
  • 3M Clerc, J Kennedy. The particle swarm: Explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58~73 被引量:1
  • 4F Solis, R Wets. Minimization by random search techniques.Mathematics of Operations Research, 1981, 6(1 ): 19~ 30 被引量:1
  • 5F Van den Bergh. An analysis of particle swarm optimizers: [ Ph D dissertation]. Pretoria: University of Pretoria, 2001 被引量:1
  • 6王凌.智能优化算法及其应用.北京:清华大学出版社,2001( Wang Ling. Intelligent Optimization Algorithms with Applications( in Chinese) . Beijing: Tsinghua University Press,2001) 被引量:1
  • 7J Holland. Adaption in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press, 1975 被引量:1

共引文献157

同被引文献38

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部