期刊文献+

一类造血模型的全局渐近性及Hopf分支周期解 被引量:1

The global asymptoticy and Hopf bifurcation in a hematopoiesis model with delay
下载PDF
导出
摘要 研究了一类具有离散时滞的造血模型正平衡态的全局渐近性及Hopf分支周期解.利用函数导数的性质,构造Lyapunov函数的方法、分支理论及周期函数的正交性,分别在δ>0和δ=0的情况下得到了该模型正平衡态的存在唯一性的充要条件,全局吸引性的充分条件及分支周期解的存在性条件和近似表达式.举出实例,运用M atlab给出了血液模型的数值解的拟合图像. The global asymptoticy of the positive equlibria and hopf bifurcation peridic solution in a hematopoiesis model with decrete delays are studied. In δ 〉 0 and in δ = 0 , the necessary and sufficient conditions of the existence and uniquity of the positive equlibria by applying functional derivative is obtained, the global attractiveness of the positive equlibria is investigated by stucuring Lyapunov function and bifurcation periodic solution are derived and the form of the approximate peridic solution is obtained by using the solvability condition. Some specific examples are given and the solution diagrame appears by Matlab.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2007年第6期19-23,共5页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(10071048) 陕西师范大学重点科研基金资助项目(995091)
关键词 造血模型 周期解 全局渐近性 HOPF分支 hematopoiesis periodic solution global asymptoticy Hopf bifurcation
  • 相关文献

参考文献2

二级参考文献12

  • 1Mackey M C. Some Models inHemapoiesis:Predictions and Problems[A]. In: Retenberg M Ed. Biomathematics and CellKinetics[C]. North Holland:Elsevier, 1981. 23-38. 被引量:1
  • 2Mackey M C. Glass L. Oscillation and chaos in physiological control systems[J].Science, 1977, 197,287-289. 被引量:1
  • 3Mackey M C. Periodic Auto-immune hemdytic anemia: an induced dynamics disease[J].Bulletin of Mathematical Biology, 1979, 41(6): 829-834. 被引量:1
  • 4Mackey M C, Heider Uwe an der. Dynamical diseases and bifurcations: Unstandingfunctional disorders in physiological systems[J]. Funk Biol Med, 1982, 156, 156-164. 被引量:1
  • 5Mackey M C. Unified Hypothesis for the Origin of Aplastic Anemia and PeriodicHematopoiesis[J]. Blood,1978, 51(5): 941-956. 被引量:1
  • 6Gopalsamy K, Kulenovic M R S. Ladas G. Oscillations and global attractivity inmodels of hematopoiesis[J].Dynamics and Differential Equations, 1990, 2(2):117-132. 被引量:1
  • 7Kuang Y. Delay Differential Equations with Applications in Population Dynamics[M].San Diego:Academic Press, 1993. 273. 被引量:1
  • 8Hale J K. Theory of Functional Differential Equations[M]. new York:Springer-Verlag,1977. 37-41. 被引量:1
  • 9Li S L, Wen L Zh. Functional Differential Equations (in Chinese)[M]. Changsha:HunanPress of Science and Technology. 1986. 27-29. 被引量:1
  • 10Barbalat I. Systemes d'equations differentielle d'oscillations nonlineaires[J].Rev Roumaine Math Pures Appl,1959, 4. 267-270. 被引量:1

共引文献8

同被引文献8

  • 1司瑞霞,陈斯养.一类含时滞的广义Logistic模型的Hopf分支[J].西北师范大学学报(自然科学版),2006,42(6):18-22. 被引量:7
  • 2Hassard B, Kazarionff D, Wan Y. Theory and applications of hopf bifurcation[ M ]. Cambridge : Cambridge University Press, 1981. 被引量:1
  • 3Gopalsamy K. Stability and oscillations in delay differential equations of population dynamics [ M ]. Dordrecht: Kluwer Academics Publishers, 1992. 被引量:1
  • 4Ma Z E. Stability of predation models with time delay[J]. Appl Anal, 1986,22 (4) :159 -192. 被引量:1
  • 5Freedman H I, Rao V S. Stability of a system involving two time delay [ J ]. Siam J Appl Math, 1986,46 (9) :552 - 560. 被引量:1
  • 6Kuang Y. Delay differential equations with applications in population dynamics [ M ]. Boston:Academic Press, 1993. 被引量:1
  • 7Song Y L, Peng Y H. Stability and bifurcation analysis on a logistic model with discrete and distributed delays[ J ]. Applied Mathematics and Computation,2006, 181 ( 2 ) : 1745 - 1757. 被引量:1
  • 8范丽,陈斯养,史忠科.一类广义Logistic单种群时滞模型的Hopf分支[J].兰州大学学报(自然科学版),2007,43(6):97-102. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部