期刊文献+

结合Gibbs随机场的加权模糊C均值图像分割算法 被引量:2

Weighed-FCM image segmentation algorithm combined with gibbs random field
下载PDF
导出
摘要 加权模糊C均值(WFCM)算法是在模糊C均值(fuzzyC-Means,FCM)算法的基础上提出的,它为不同的样本添加了不同的权值,从而改善了聚类效果。然而传统的加权模糊C均值算法具有对噪声非常敏感的缺陷,于是本文提出了一种结合Gibbs随机场的改进的WFCM算法(G-WFCM)。根据Gibbs随机场概率分布构造了一个Gibbs空间约束场,通过用Gibbs空间约束场为WFCM施加空间约束的方法来减小噪声对分割结果的影响。文中给出的人脑MRI图像分割实验证明,本文提出的G-WFCM算法具有比原WFCM算法更强的抗椒盐噪声能力。 Weighed Fuzzy C-Means (WFCM) algorithm is based on Fuzzy C-Means (FCM) algorithm, which adds different weighs to different samples hence improved the clustering results. But traditional WFCM algorithm is very sensitive to noise, so we propose a new WFCM algorithm combined with Gibbs random field (GRF). We construct a Gibbs spatial constraint field based on GRF and Gibbs distribution, and bring spatial constraint to bear on WFCM, which minished the negative effect for segmentation caused by noise. The illustrating example of MRI image segmentation in this paper indicates this algorithm is more resistible than WFCM under "salt & pepper" noise.
出处 《电子测量技术》 2007年第11期190-192,共3页 Electronic Measurement Technology
基金 国家博士点基金资助项目(20040699015) 西北工业大学研究生创业种子基金资助项目(Z200631).
关键词 模糊C均值 GIBBS随机场 Gibbs分布 图像分割 fuzzy C-Means gibbs random field gibbs distribution image segmentation
  • 相关文献

参考文献7

二级参考文献25

  • 1刘健庄,谢维信,高新波.多阈值图像分割的遗传算法方法[J].模式识别与人工智能,1995,8(A01):126-132. 被引量:8
  • 2Dave R N. Generalized Fuuzy C-shell Clustering and Detection of Circular and Elliptical Boundaries[J]. Pattern Recognition, 1992, 25(7): 639-641. 被引量:1
  • 3Krishnapuram R, Frigui H, Nasraui O. The Fuzzy C Quadric Shell Clustering Algorithm and the Detection of Second-degree[J]. Pattern Recognition Letters, 1993, 14(7): 545-552. 被引量:1
  • 4Girolami M. Mercer Kernel Based Clustering in Feature Space[J]. IEEE Trans on Neural Networks, 2002, 13(3): 780-784. 被引量:1
  • 5Burges C J C. Geometry and Invariance in Kernel Based Methods[A]. Advance in Kernel Methods-Support Vector Learning[C]. Cambridge: MIT Press, 1999. 89-116. 被引量:1
  • 6Scholkopf B, MIka S, Burges C, et al. Input Space Versus Feature Space in Kernel-based Methods[J]. IEEE Trans on Neural Networks, 1999, 10(5): 1000-1017. 被引量:1
  • 7Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981. 被引量:1
  • 8Bezdek J C. Convergence Theory for Fuzzy C-Means: Counterexamples and Repaires[J]. IEEE Trans on SMC, 1987, 17(4): 873-877. 被引量:1
  • 9Bezdek J C, Keller J M, Krishnapuram R, et al. Will the Real IRIS Data Please Stand Up?[J]. IEEE Trans on Fuzzy System, 1999, 7(3): 368-369. 被引量:1
  • 10Chernoff D F. The Use of Faces to Represent Points in k-dimensional Space Graphically[J]. Journal of American Statistic Association, 1999, 58(342): 361-368. 被引量:1

共引文献302

同被引文献24

  • 1劳丽,吴效明,朱学峰.模糊集理论在图像分割中的应用综述[J].中国体视学与图像分析,2006,11(3):200-205. 被引量:20
  • 2张兰,王珂,杨文宏.一种结合空间信息的FCM算法对脑MR图像的分割[J].计算机工程与应用,2007,43(26):203-205. 被引量:6
  • 3Chen Q, Ji Z X, Sun Q S, et al. Homogeneous patch based FCM algorithm for brain MR image segmentation [ C ] /! Proceedings of the 2009 Chinese Conference on Pattern Recognition. Pisca- taway, NJ, USA: IEEE, 2009: 593-597. 被引量:1
  • 4Yah Q F, Wu F C. Brain MR image segmentation using fuzzy clustering with spatial constraints based on Markov random field theory [ C] //Proceedings of the 2nd International Workshop on Medical Imaging and Augmented Reality. Berlin, Germany: Springer-Verlag, 2004, 188-195. 被引量:1
  • 5Liu S Y, Li X F, Li Z M. A new image segmentation algorithm based on the fusion of Markov random field and fuzzy c-means clustering [ C ] // Proceedings of International Symposium on Communications and Information Technologies. Piscataway, N J, USA: IEEE, 2005: 144-147. 被引量:1
  • 6Chatzis S P, Varvarigou T A. A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially con- strained image seonentation [ J ]. IEEE Transactions on Fuzzy Systems, 2008, 16(5) : 1351-1361. 被引量:1
  • 7Tam S C F, Leung C C, Tsui W K. A robust segmentation meth- od for the AFCM-MRF model in noisy image [ C ] //Proceedings of 2009 IEEE International Conference on Fuzzy Systems. Pisca- taway, NJ, USA: IEEE, 2009, 379-383. 被引量:1
  • 8Li B, Wang T, Yan G. A new algorithm for segmentation of brain MR images with intensity nonuniformity using fuzzy markov ran- dom field [ C ] // Proceedings of the 3rd International Confer- ence on Bioinformatics and Biomedical Engineering. Piscataway, N J, USA: IEEE, 2009 : 1-4. 被引量:1
  • 9Li X C, Bian S X. Combining wavelet domain Markov random field and fuzzy clustering for robust multiresolution image seg- mentation [ C ] // Proceedings of the 2nd International Joint Conference on Computational Sciences and Optimization. Pisea- taway, NJ, USA: IEEE, 2009: 851-855. 被引量:1
  • 10Xue J H, Pizurica A, Philips W, et al. An integrated method of adaptive enhancement for unsupervised segmentation of MRI brain images [ J]. Pattern Recognition Letters, 2003, 24( 15 ) : 2549-2560. 被引量:1

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部