期刊文献+

基于粗集的规则不确定性量度 被引量:2

Uncertainty Measures of Rules Based on Rough Set
下载PDF
导出
摘要 在对粗集及其相关理论的研究基础上,给出了一种基于推广粗集模型和信息熵的规则不确定性量度及其相关定理的证明,同时在此基础上还提出了一种规则噪音处理方法,实验结果证明该不确定性量度适用于评价从有噪音数据中提取的规则。 Data Mining has been an urgent need because of increasing size of current databases. Rough Set theory has become an important method for data mining due to its unique advantage in knowledge discovery. An information entropy-based uncertainty measure is presented first based on generalized rough set model in this paper. Second, this paper puts forward a new method to resolve noisy rules. The empirical result illustrates that the uncertainty measure is suitable for evaluating rules retrieved from noisy data.
作者 凌方
出处 《南京工业职业技术学院学报》 2007年第2期32-35,共4页 Journal of Nanjing Institute of Industry Technology
关键词 粗集 噪音 不确定性量度 rough set noise uncertainty measure
  • 相关文献

同被引文献9

  • 1代劲,胡峰.不完备信息系统下的不确定性度量方法[J].计算机应用,2006,26(1):198-201. 被引量:4
  • 2Pawlak Z.Rough sets[J].International Journal of International Sciences, 1982( 11 ) :341-356. 被引量:1
  • 3Shi Kai-quan.S---rough sets and application in diagnosis-recognition for disease[C]//IEEE Proceedings of the First International Conference on Machine Learning and Cybemetics,2002,4( 1 ):50-54. 被引量:1
  • 4Shi Kai-quan,Chang Ting-cheng.One direction S--rough sets[J].International Journal of Fuzzy Mathematics, 2003,11 (2) : 525-543. 被引量:1
  • 5Pawlak Z. Rough Sets[J]. International Journal of International Sciences, 1982, 11(2): 341-356. 被引量:1
  • 6Kaiquan S. S-rough Sets and Application in Diagnosis-recognition for Disease[C]//Proceedings of the 1st International Conference on Machine Learning and Cybernetics. [S.l.]: IEEE Press, 2002: 50-54. 被引量:1
  • 7Kaiquan S, Chang Tingcheng. One Direction S-rough Sets[J]. International Journal of Fuzzy Mathematics, 2003, 11(2): 525-543. 被引量:1
  • 8史开泉,崔玉泉.S-粗集和它的一般结构[J].山东大学学报(理学版),2002,37(6):471-474. 被引量:175
  • 9杨富平,莫智文.粗糙集中的近似精确问题[J].四川师范大学学报(自然科学版),2004,27(2):155-159. 被引量:9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部