期刊文献+

支持向量机的可靠度时序预测分析与应用 被引量:2

Analysis and Application of Time Series Prediction of Reliability based on Support Vector Machines
下载PDF
导出
摘要 提出了一种利用支持向量机进行可靠度时序预测的方法。通过重构相空间的饱和嵌入维数,确定支持向量机的最佳输入变量;利用支持向量机强大非线性映射能力、网络结构的自动最优化特性,实现时间序列的非线性预测。最后,应用于某型发动机涡轮增压器可靠度预测,结果证明该方法具有较高的预测精度和较强的推广能力,对于一般意义上的可靠度监测具有重要的价值。 A method of time series prediction of reliability based on support vector machines is proposed. The network's input variable number is determined through computing reconstruct phase space's saturated embedding dimension; It makes use of support vector machines' strongly nonlinear mapping ability, and network's structure is optimally auto-created. Application results in turbochargers of an engine show that the presented method possesses much better precision. The method is important for general reliability prediction.
作者 刘莉 徐浩军
出处 《火力与指挥控制》 CSCD 北大核心 2007年第11期118-120,共3页 Fire Control & Command Control
关键词 可靠度 时序预测 涡轮增压器 支持向量机 reliability time series prediction, turbocharger, support vector machines
  • 相关文献

参考文献5

二级参考文献15

  • 1[1]Vapnik V.The Nature of Statistical learning[M].New York:Springer,1995. 被引量:1
  • 2[2]Gunn S.Support Vector Machines for Classification and Regression [R].Image Speech Intelligent System Research Group ISIS-1-98,Southampton University,1998. 被引量:1
  • 3[3]Drucker H,Burges C J C,Kaufman L,Smola A,Vapnik V.Support Vector Regression Machines [A].In Mozer M,Jordan M,Petsche T,Editors,Advances in Neural Information Processing Systems 9 [C].Cambridge,MA:MIT Press,1997:155-161. 被引量:1
  • 4[4]Campbell C.An Introduction to Kernel Methods [A].In Howlett R J,Jain L C,Editors,Radial Basis Function Networks:Design and Applications[C].Berlin:Springer Verlag,2000:31-38. 被引量:1
  • 5[5]Smola A.Regression Estimation with Support Vector Learning Machines[D].Master's thesis,Mu nchen:Technische Universita t Mu Nchen,Germany,1996. 被引量:1
  • 6[6]Smola A J,Scholkopf B.A Tutorial on Support Vector Regression[R].NeuroCOLT Technical Report NC-TR-98-030,Royal Holloway College,University of London,UK,1998. 被引量:1
  • 7[7]Vapnik V,Golowich S,Smola A.Support Vector Method for Function Approximation,Regression Estimation,and Signal Processing [A].In Mozer M,Jordan M,Petsche T,Editors,Advances in Neural Information Processing Systems 9[C].Cambridge,MA:MIT Press,1997:281-287. 被引量:1
  • 8[8]Muller K R,Smola A,Rutsch G,Scholkopf B,Kohlmorgen J,Vapnik V.Predicting Time Series with Support Vector Machines[A].In Scholkopf B,Burges C J C,Smola A J,Editors,Advances in Kernel Methods-Support Vector Learning [C].Cambridge,MA:MIT Press,1999:243-254. 被引量:1
  • 9[9]Mukherjee S,Osuna E,Girosi F.Nonlinear Prediction of Chaotic Time Series Using a Support Vector Machine[A].In Principe J,Gile L,Morgan N,Wilson E,Editors,Neural Networks for Signal Processing Ⅶ-Proceedings of the 1997IEEE Workshop[C].New York:IEEE,1997:511-512. 被引量:1
  • 10[10]Cao L J,Gu Q M.Dynamic Support Vector Machines for Non-Stationary Time Series Forecasting[J].Intelligent Data Analysis,2002,6(1):67-83. 被引量:1

共引文献33

同被引文献12

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部