期刊文献+

带有周期系数和时滞的细胞神经网络模型的周期解的存在性和全局指数稳定性 被引量:7

Existence and Global Exponential Stability of Periodic Solution of Cellular Neural Networks with Periodic Coefficients and Delays
下载PDF
导出
摘要 本文运用非奇异M矩阵的性质,不等式分析法和建立在重合度基础上的连续性定理,得到了带有周期系数和周期时滞的细胞神经网络的周期解的存在性以及全局指数稳定性的新判据。并且给出了指数收敛率的估计。 By using the properties of nonsingular M-matrix, inequity analysis and a continuation theorem based on the coincidence degree, derived in this paper are some new sufficient conditions ensuring existence and global exponential stability of periodic solution of cellular neural networks with periodic coefficients and delays, and at the same time, the exponentially convergent rates are also estimated.
出处 《工程数学学报》 CSCD 北大核心 2007年第6期995-1006,共12页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(70471049).
关键词 细胞神经网络 周期解 解的存在性 全局指数稳定性 cellular neural networks periodic solution existence of solution global exponential stability
  • 相关文献

参考文献10

  • 1Zhao H. Exponential stability and periodic oscillatory of bi-directional associative memory neural network involving delays[J]. Neucomputing, 2006, 69:424-448 被引量:1
  • 2李必文,郑绿洲.具有两个神经元的时滞细胞神经网络的周期解[J].华中科技大学学报(自然科学版),2005,33(9):117-119. 被引量:2
  • 3朱培勇,孙世新.具有时滞的Hopfield神经网络的周期解[J].电子科技大学学报,2005,34(5):680-683. 被引量:2
  • 4Liu Z, Liao L. Existence and global exponential stability of periodic solution of cellular neural networks with time-varying delays[J]. Journal of Mathematical Analysis and Applications, 2004, 290:247-262 被引量:1
  • 5Liu Z, et al. Existence and global exponential stability of periodic solution for BAM neural networks with periodic coefficients and time-varying delays[J]. IEEE Transactions on Circuits System I, 2003, 50: 1162-1172 被引量:1
  • 6Jiang H, et al. Existence and global exponential stability of almost periodic solution for cellular neural networks with variable coefficients and time-varying delays[J]. IEEE Transactions on Neural Networks, 2005, 16:1340-1351 被引量:1
  • 7Guo S, et al. Global existence of periodic solutions of BAM neural networks with variable coefficients[J]. Physics Letters A, 2003, 317:97-106 被引量:1
  • 8陈景良,陈向晖著..特殊矩阵[M].北京:清华大学出版社,2001:795.
  • 9Gaines R E, Mawhin J L. Coincidence degree and nonlinear differential equations[M]. Lecture Notes in Math., 568, Berlin: Springer-Verlag, 1990 被引量:1
  • 10王全义.具无限时滞的积分微分方程的周期解的存在性、唯一性及稳定性[J].应用数学学报,1998,21(2):312-318. 被引量:41

二级参考文献14

  • 1Hu Yueming,Ann Differ Equ,1987年,3卷,3期,267页 被引量:1
  • 2Zhang Shunian,Ann Differ Equ,1987年,3卷,3期,365页 被引量:1
  • 3李森林,泛函微分方程,1987年 被引量:1
  • 4黄启昌,中国科学.A,1984年,10期,882页 被引量:1
  • 5Zhang Jiye, Jin Xuesong. Global stability analysis in delayed Hopfield neural network models[J].IEEE Trans Neural Networks, 2000, 14(7):745-753. 被引量:1
  • 6Zhou Dongming, Zhang Liming, Cao Jinde. On global exponential stability of celleur neural network with Lipschitz-continuous activation and variable delays[J].Applied Mathematics and Computation, 2004, 151(2):379-392. 被引量:1
  • 7Dong Qinxi, Matsui K, Huang Xiankai. Existence and stability of periodic solutions for Hopfield neutral network equations with periodic input[J].Nonlinear Analysis, TMA, 2002, 49(4):471-479. 被引量:1
  • 8Guo Shangjian, Huang Lihong. Periodic solutions in an inhibitory two-neuron network[J].Journal of Computational and Applied Mathematics, 2003, 161(1):217-229. 被引量:1
  • 9Zhang Yi. Global exponential stability and periodic solutions of delay Hopfield neural networks[J]. Int. J. Syst. Sci.,1996, 27(2): 227-231 被引量:1
  • 10Zhang Yi, Zhong Shou-ming. Periodic solutions and global stability of delay Hopfield neural networks[J].Int. J.Syst. Sci, 1996, 27(9): 895-901 被引量:1

共引文献42

同被引文献36

  • 1蒋秋浩,曹进德.具有变时滞的神经网络的全局指数稳定性[J].工程数学学报,2006,23(2):373-376. 被引量:6
  • 2Li K,Zhang X,Li Z.Global exponential stability of impulsive cellular neural networks with time-varying and distributed delay[J].Chaos,Solitons and Fractals,2009,41(3):1427-1434. 被引量:1
  • 3Chua L O,Yang L.Cellular neural networks:theory[J].IEEE Transactions on Circuits Systems,1988,35(10):1257-1272. 被引量:1
  • 4Sun C,Feng C.Exponential stability and periodicity of delayed neural networks[J].Mathematics and Computers in Simulation,2004,66(6):469-478. 被引量:1
  • 5郭大均,孙经先,刘兆理.非线性常微分方程泛函方法[M].济南:山东科学技术出版社,2006. 被引量:1
  • 6Ou Chunxia.Anti-periodic solutions for high-order Hopfield neural networks[J].Comput Math Appl, 2008, 56. 被引量:1
  • 7Shao Jianying.An anti-periodic solution for a class of recurrent neural networks[J].J ComputApplMath, 2009, 228. 被引量:1
  • 8Zhong Hong, Wu Yuanheng.Anti-periodic solutions for recurrent neural networks without assuming global Lipshitz conditions[J]. ElectronicJ. Diff. Eqs, 2010, 50. 被引量:1
  • 9Huang Zuda, Peng Leuun, Xu Min.Anti-periodic solutions for high-order cellular neural networks with time-varying delays[J].Electronic J. Diff. Eqs, 2010, 59. 被引量:1
  • 10Shi Peilin, Dong Lingzhen.Existence and exponential stability of anti-periodic solutions of Hopfield neural networks with impulses[J].Applied Mathematics and Computation, 2010, 216. 被引量:1

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部