期刊文献+

基于提升小波和混合熵编码的数据压缩方法 被引量:12

Data Compression Method Based on Lifting Wavelet Transform and Hybrid Entropy Coding
下载PDF
导出
摘要 大型发电机组远程状态监测系统中实时数据的存储与网络传输对数据压缩和重构技术提出了较高的要求。文中给出一种提升小波变换与混合熵编码技术相结合的数据压缩方法。首先利用基于提升格式的双正交滤波器组对实时数据进行小波分解,然后对小波系数进行阈值量化,最后通过混合熵编码技术对保留的系数进行编码,以进一步提高压缩效率。对实际发电机组实时数据进行了压缩试验,结果表明,有损压缩技术和无损压缩技术的结合可以获得较高的压缩比,能够较好地满足大型发电机组实时数据的存储和传输需求,是一种有效和实用的实时数据压缩方法。 For the urgent demand of real-time data compression of large turbine-generator units online monitoring and remote diagnosis, a novel real-time data compression and reconstruction method combining lifting wavelet transform and hybrid entropy coding is proposed. The signal to be compressed is firstly decomposed with biorthogonali filters based on lifting wavelet transform and the hard-threshold method is then applied to the wavelet coefficients. In order to implement higher efficient compression, a hybrid entropy coding scheme is employed to code the reserved coefficients. This method has been applied to the real-time data acquired from a large turbine-generator unit. Simulation results indicate that the proposed scheme which combines both lossy and lossless compression techniques can achieve satisfactory compression performance in applications.
出处 《电力系统自动化》 EI CSCD 北大核心 2007年第22期65-69,共5页 Automation of Electric Power Systems
基金 国家自然科学基金资助项目(50606008)~~
关键词 发电机组监测 数据压缩 小波变换 提升格式 熵编码 turbine-generator units monitoring data compression wavelet transform lifting scheme entropy coding
  • 相关文献

参考文献14

二级参考文献81

  • 1乐全明,郁惟镛,柏传军,费铭薇,杜俊红.基于提升算法的电力系统故障录波数据压缩新方案[J].电力系统自动化,2005,29(5):74-78. 被引量:26
  • 2苗世洪,孙扬声,吴小辰.基于电力系统故障信息远程通信的高效数据压缩与解压技术研究[J].电力系统自动化,1996,20(5):53-55. 被引量:14
  • 3何建军.小波变换及其在电机故障信号检测和分析中的应用研究[M].重庆:重庆大学,1999.. 被引量:1
  • 4[5]Oinis Chaari, Patrick Bastard, Michel Meunier. Prony's Method: An Efficient Tool for the Analysis of Earth Fault Currents in Petersen-coil-protected Networks. IEEE Trans on Power Delivery, 1995, 10(3): 1234~1241 被引量:1
  • 5[1]Rosenzweig P, Kadansky M, Hanna S. The Java Reliable Multicast Service: A Reliable Multicast Library . Sun Labs, 1997 被引量:1
  • 6[2]Burrows M,Weeler D J.A Block-sorting Lossless Data Compression Algorithm. 1994-05-10 被引量:1
  • 7[3]Horpool R N,Cormack G V.Constructing Word-based Text Compression Algorithms, 1999 被引量:1
  • 8[4]Keogh E, Chakrabarti K, Pazzani M, et al. Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases. Journal of Knowledge and Information Systems, 2000 被引量:1
  • 9[5]Shatkay H. Approximate Queries and Representations for Large Data Sequences. Technical Report , Department of Computer Science,Brown University, 1995 被引量:1
  • 10[6]Shatkay H, Zdonik S. Approximate Queries and Representations for Large Data Sequences. Proceedings of the 12th IEEE International Conference on Data Engineering, 1996 被引量:1

共引文献156

同被引文献124

引证文献12

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部