期刊文献+

一类线性比式和问题的全局优化算法 被引量:3

Global Optimization Algorithm for a Class of Sum of Linear Ratios Problem
下载PDF
导出
摘要 对许多工程设计中常用的一类带常系数线性比式和问题(P)提出一确定性全局优化算法.该算法利用等价问题和线性化技术,建立了问题(P)的松弛线性规划(RLP),从而将原非凸问题(P)的求解过程转化为求解一系列线性规划问题(RLP),通过可行域的连续细分以及求解一系列线性规划,提出的分枝定界算法收敛到问题(P)的全局最优解,且数值实验表明了算法的可行性. In this paper a deterministic global optimization algorithm is proposed for locating global minimum of a class of sum of linear ratios problem (P) ,which can be applied to engineering designs. By utilizing equivalent problem and linearization technique, the relaxation linear programming (RLP) about (P) is established, thus the initial non-convex problem (P) is reduced to a series of linear programming (RLP). The proposed branch and bound algorithm is convergent to the global minimum of (P) through the successive refinement of the feasible region and solutions of a series of RLP, and finally the numerical experiment is given to illustrate the feasiblity of the presented algorithm.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第1期16-18,33,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(10671057) 河南省自然科学基金(0511011500) 河南科技学院自然科学基础研究计划项目(06054)
关键词 线性比式和 全局优化 线性化技术 sum of linear ratios global optimization linearization technique
  • 相关文献

参考文献5

  • 1Benson H P.On the global optimization of sums of linear fractional functions over a convex set[J].Journal of Optimization Theory and Applications,2004,121:19-39. 被引量:1
  • 2Konno H,Fukaisi K.A branch and bound algorithm for solving low rank linear multiplicative and fractional programming problems[J].Journal of Global Optimization,2000,18:283-299. 被引量:1
  • 3Wang Y J,Shen P P,Liang Z A.A branch-and-bound algorithm to globally solve the sum of several linear ratios[J].Applied Mathematics and Computation,2005,168:89-101. 被引量:1
  • 4Hoai-Phung,Ng T,Tuy H.A unified monotonic approach to generalized linear fractional programming[J].Journal of Global Optimization,2003,26:229-259. 被引量:1
  • 5Wang Y J,Zhang K C.Global optimization of nonlinear sum of ratios Problem[J].Applied Mathematics and Computation,2004,158:319-330. 被引量:1

同被引文献20

  • 1申培萍,焦红伟.一类非线性比式和问题的全局优化算法[J].河南师范大学学报(自然科学版),2006,34(3):5-8. 被引量:3
  • 2申培萍.全局优化方法[M].北京:科学出版社,2007. 被引量:2
  • 3Freund R W,Jarre F. Sloving the sum-of-ratios problem by an interior-point method[J]. Journal of Global Optimization, 2001,19:83-102. 被引量:1
  • 4Wang Y J,Shen P P,Liang Z. A branch-and-bound algorithm to globally solve the sum of several linear ratios[J]. Applied mathematics and computation, 2005,168:89- 101. 被引量:1
  • 5Qu S J,Zhang K C. An efficient algorithm for globally minimizing sum of quadratic ratios problem with nonconvex quadrtic constraints [J]. Applied mathematics and computation, 2007,189 : 1624-1636. 被引量:1
  • 6Shen P P,Li X A. Accelerating method of global optimization for signomial geometric programming[J]. Journal of Computation and Applied Mathematics, 2008,214 : 66- 77. 被引量:1
  • 7AnL T H,Tao P T. A branch and bound method via d. c. optimization algorithms and ellipsoidal technique for box constrained nonconvex quadratic problems[J]. Journal of Global Optimization, 1998,13 : 171-206. 被引量:1
  • 8袁亚湘,孙文瑜.最优化理论与方法[M].上海:科学出版社,2003:241-384. 被引量:3
  • 9BENSON H P.On the global optimization of sums of linear fractional functions over a convex set[J].Journal of Optimization Theory and Applications,2004,121(1):19-39. 被引量:1
  • 10BENSON H P.Global optimization algorithm for the nunlinear sum of ratios problem[J].Journal of Optimization Theory and Applications,2002,112(1):1-29. 被引量:1

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部