期刊文献+

基于粒子群优化算法的滤波器优化

Optimized Filter Design Based on Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 给出一种基于粒子群优化算法(PSO)的模拟滤波器优化设计方法。传统的模拟滤波器的精度与效率均较差,引入PSO算法可对滤波器参数进行寻优。将滤波器的设计问题转化为滤波器参数的优化问题,然后利用粒子群优化算法对整个参数空间进行高效搜索以获得最优解;通过变异、重新随机化及采用自适应的惯性权重,提高了算法的搜索效率及收敛性。实例计算表明了算法在该类问题中的有效性和可行性。 An optimization scheme of analog filter design based on the particle swarm optimization ( PSO) algorithm are proposed. Traditional analog filter is imprecise and inefficient. The optimal parameters of the filters can be obtained by introducing the PSO algorithm. By translating the design of the filter into the optimization of its parameters, PSO can be used to explore the whole parameters space effectively in parallel in order to achieve the optimum solution. With adopting mutation and re-randomizing operator and introducing adaptive inertia weight, the global convergence performance and the effectiveness of the proposed algorithm is enhanced. The practical example shows that the algorithm is effective and feasible.
作者 邹益民 汪渤
出处 《自动化仪表》 CAS 2007年第11期8-11,共4页 Process Automation Instrumentation
关键词 粒子群优化 群体智能 进化算法 滤波器优化 模拟滤波器 Particle swarm optimization( PSO) Swarm intelligence Evolutionary algorithm Filter optimization Analog filter
  • 相关文献

参考文献10

  • 1杨树兴,张成,朱伯立.远程火箭弹简易控制方法[J].北京理工大学学报,2004,24(6):486-491. 被引量:14
  • 2KENNEDY J,EBERHART R C.Particle swarm optimization[C]//IEEE International Conference on Neural Network,Perth,Australia:IEEE,1995:1942-1948. 被引量:1
  • 3COLORNI A,DORIGO M,MANIEZZO V.Distributed optimization by ant colonies[C]//In Proc.of the First Europe Conf Artificial Life,Cambridge,MA MIT press,1991:134-142. 被引量:1
  • 4SHI Y,EBERHART R C.A modified swarm optimizer[C] //IEEE International Conference on Evolutionary Computation,Anchorage,AK USA:IEEE,1998:69 -73. 被引量:1
  • 5EBERHART R C,SHI Y.Comparing inertia weights and constriction factors in particle swarm optimization[C] //Congress on Evolutionary Computation,CA USA:LaJolla,2000:84 -88. 被引量:1
  • 6KRUSIENSKI D J,JENKINS W K.Adaptive Filtering via Particle Swarm Optimization[C]// In Proc.of the 37th Asilomar Conf.on Signals,Systems,and Computers,PA USA:IEEE,2003:571-575. 被引量:1
  • 7彭宇,彭喜元,刘兆庆.微粒群算法参数效能的统计分析[J].电子学报,2004,32(2):209-213. 被引量:44
  • 8KRUSIENSKI D J,JENKINS W K.The Application of Particle Swarm Optimization to Adaptive IIR Phase Equalization[C]//In Proc.of the 2004 ICASSP,PA USA:IEEE,2004:693 -696. 被引量:1
  • 9KRUSIENSKI D J.Enhanced Structured Stochastic Global Optimization Algorithms for IIR and Nonlinear Adaptive Filtering[D].Department of Electrical Engineering,The Pennsylvania State University,State College,PA USA:2004. 被引量:1
  • 10朱伯立.[D].北京:北京理工大学机电工程学院,2002. 被引量:7

二级参考文献7

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部