摘要
We propose a Mach-Zehnder interferometer (MZI) based on coupled dielectric pillars. It is composed of single-row pillar coupled waveguide modulating arms and three-row pillar waveguide 3 dB couplers. The slow light property and transmission loss of the single-row pillar modulating arm are optimized by the plane wave expansion method. A short 3dB coupler is designed based on the modes transformation in three-row pillar waveguide. Finite difference time domain simulations prove the validity of this MZI and show that it has low insertion loss of 1.1 dB and high extinction ratio of 〉 12 dB.
We propose a Mach-Zehnder interferometer (MZI) based on coupled dielectric pillars. It is composed of single-row pillar coupled waveguide modulating arms and three-row pillar waveguide 3 dB couplers. The slow light property and transmission loss of the single-row pillar modulating arm are optimized by the plane wave expansion method. A short 3dB coupler is designed based on the modes transformation in three-row pillar waveguide. Finite difference time domain simulations prove the validity of this MZI and show that it has low insertion loss of 1.1 dB and high extinction ratio of 〉 12 dB.
基金
Supported by the National Basic Research Program of China under Grant No. 2006CB708310 and Natural Science Foundation of Hubei Province, China under Grant No. 2006ABD002.