摘要
设α是环R的一个自同态,称环R是α-斜Armendariz环,如果在R[x;α]中,(∑_(i=0)~ma_ix^i)(∑_(j=0)~nb_jx^j)=0,那么a_ia^i(b_j)=0,其中0≤i≤m,0≤j≤n.设R是α-rigid环,则R上的上三角矩阵环的子环W_n(p,q)是α~—-斜Armendariz环.
Let a be an endomorphism of a ring R. A ring R is called a-skew Armendariz, if ∑i=0^maix^i)(∑j=0^nbjx^j)=0 in R[x;α], then aiα^i(bj) = 0, where 0 ≤ i ≤ m,0 ≤ j ≤ n. Let R be α-rigid. Then a class of subrings Wn(p, q) of upper triangular matrix rings are α^--skew Armendariz.