期刊文献+

应用φ~4理论研究氢原子Stark效应及Zeeman效应

APPLICATION OF φ~4-THEORY ON STARK EFFECT AND ZEEMAN EFFECT OF THE HYDROGEN ATOM
下载PDF
导出
摘要 从格林函数出发把Stark效应及Zeeman效应中的氢原子系统映射成为四维各向异性非简谐振子.利用复合场(Multi-component Field)对称因子(Symmetry Factor)方法及费曼图计算了基态能级的四阶微扰展开.计算了二阶和四阶真空圈图(Vacuum Diagram)的O(N)对称因子.通过引入复合φ2场张量把对称因子推广到复合φ4×φ2的耦合情况.提出φ4理论可以成为研究库仑系统问题的新方法. The hydrogen atom in the Stark effect and Zeeman effect is mapped into the four -dimensional anisotropican harmonic oscillator by the Green function. The Symmetry Factor of four loops Vacuum Diagram is given. The tensor of Multicomponent Ф^4 field is introduced to calculate the new case of Multicomponent Ф^4 × Ф^2 field in the Zeeman effect. The four - order perturbation expansion of the ground state is studied by the mean of Multi- component Field Symmetry Factor and Feynman Diagram. It is suggested that the Ф^4 - theory can be the new tool for the study of Coulomb system.
作者 钟鸣 陈浩
出处 《华南师范大学学报(自然科学版)》 CAS 2007年第2期62-69,共8页 Journal of South China Normal University(Natural Science Edition)
关键词 φ^4理论 STARK效应 ZEEMAN效应 氢原子 Ф^4 - theory Stark effect Zeeman effect Hydrogen atom
  • 相关文献

参考文献10

  • 1KLEINERT H.Path Integrals in Quantum Mechanics,Statistics,Polymer Physics,and Financial Markets 3nd.ed.[M].Singapore:World Scientific,2001,248. 被引量:1
  • 2CHETOUANI] L,HAMMANN T F.Treatment of the hydrogen atom in an electric field by the path-integral formalism[J].Phys Rev A,1986,34:4737. 被引量:1
  • 3NURI U.Parametric time-coherent states for the hydrogen atom[J].Phys Rev A,2001,63:052105-1. 被引量:1
  • 4JANKE W,KLEINERT H.Large-order perturbation expansion of three-dimensional coulomb systems from four-dimensional anharmonic oscillators[J].Phys Rev A,1990,42:2792. 被引量:1
  • 5王平,杨新娥,宋小会.具有含时平方反比项的谐振子的路径积分求解[J].物理学报,2003,52(12):2957-2960. 被引量:9
  • 6凌瑞良.含时阻尼谐振子的传播子与严格波函数[J].物理学报,2001,50(8):1421-1424. 被引量:9
  • 7KLEINERT H,SCHULTE F V.Critical Properties of φ4-Theories[M],Singapore:World Scientific,2001. 被引量:1
  • 8KLEINERT H.Path Integrals in Quantum Mechanics,Statistics,Polymer Physics,and Financial Markets[M].3rd ed.Singapore:World Scientific,2001:815. 被引量:1
  • 9KLEINERT H,SCHULTE F V.Critical Properties of φ4-Theories[M].Singapore:World Scientific,2001. 被引量:1
  • 10KLEINERT H.Path Integrals in Quantum Mechanics,Statistics,Polymer Physics,and Financial Markets[M].3rd ed.Singapore:World Scientific,2001:219-227. 被引量:1

二级参考文献14

  • 1[1]Feynman R P,Hibbs A R 1965 Quantum Mechanics and Path Integrals(New York:McGraw-Hill) 被引量:1
  • 2[2]Khandekar D C,Lawande S V 1975 J.Math.Phys.16 384 被引量:1
  • 3[3]Dhara A K,Lawande S V 1984 Phys.Rev.A 30 560 被引量:1
  • 4[4]Lewis Jr H R,Riesenfeld W B 1969 J.Math.Phys.10 1458 被引量:1
  • 5[5]Dantas C M A,Pedrosa I A,Baseia B 1992 Phys.Rev.A 45 1320 被引量:1
  • 6[6]Um C I,Shin S M 1998 Phys.Rev.A 58 1574 被引量:1
  • 7[7]Li L X,Guo G C 1998 Acta Phys.Sin.(Overseas Edition)7 727 被引量:1
  • 8[8]Liu D Y 1999 Chin.Phys.8 1 被引量:1
  • 9[9]Maamache M 2000 Phys.Rev.A 61 26102 被引量:1
  • 10[10]Song D Y 2000 Phys.Rev.A 62 14103 被引量:1

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部