期刊文献+

面外约束对韧性材料的断裂韧度的影响 被引量:3

EFFECT OF OUT-OF-PLANE CONSTRAINT ON DUCTILE FRACTURE TOUGHNESS
下载PDF
导出
摘要 与脆性断裂的断裂韧度随厚度的增加而逐渐趋近于一个常数的变化趋势不同,韧性较好材料的弹塑性断裂韧度的特征为:在一定范围内随着厚度的增加,弹塑性断裂韧度逐渐增加。主要研究在保持试件的面内约束(a/w)保持不变的条件下,面外约束(厚度的变化)对同种材料的试件的断裂韧度的影响。首先采用韧性较好的材料进行断裂韧性实验,通过实验得到结果:试件的弹塑性断裂韧度J积分及临界裂纹尖端张开位移CTOD随着试件厚度的增加而线性增加。然后从能量平衡的角度出发,考虑在裂纹扩展过程中的所有的宏观能量耗散机制,根据通过实验验证的假设,化简后,得到最终的结果:一定程度上表征能量耗散的断裂韧度随着厚度的增加而增加,与实验结果吻合得较好。 Instead of the reducing tendency of the brittle fracture toughness with the increment of the thickness of the specimens, the elastic-plastic fracture toughness of the ductile material increases with the thickness of the specimens. In this paper, the effect of out-of-plane constraint to the fracture toughness of specimens is studied, which is defined as the different thickness of the specimens w varying with crack length a, while keeping the a/w as a constant. Experiments of ductile material fracture tests are carded out with the results: the elastic-plastic fracture toughness, J integral increases linearly with the thickness of the specimens. Theoretically, the energy release system is discussed according to the energy balance equations. With the energy release system, final results show that the fracture toughness J integral increases linearly with the thickness of the specimens, which are quite consistent with the experimental results.
出处 《工程力学》 EI CSCD 北大核心 2007年第11期19-24,共6页 Engineering Mechanics
基金 国家自然科学基金资助项目(10472049) 清华-砝马通联合基金(N10) 国家重点基础研究发展计划项目(2006CB605003)资助
关键词 断裂韧性 面外约束 厚度效应 积分 弹塑性断裂 能量耗散 fracture toughness out of plane constraint thickness effect J integral elastic-plastic fracture fracture energy
  • 相关文献

参考文献22

  • 1Broek D. Elementary engineering fracture mechanics [M]. The Hague: Martinus Nijhoff Publishers, 1986. 被引量:1
  • 2Weiss V,Yukawa S. Critical appraisal of fracture mechanics. Fracture toughness testing and its application [J]. STP 381, ASTM, 1965,46: 1-22. 被引量:1
  • 3Rivalin F, Besson J, Pineau A, Di Fant M. Ductile tearing of pipeline-steel wide plates II: modeling of in-plane crack propagation [J]. Engineering Fracture Mechanics, 2001, 68(3): 347-364. 被引量:1
  • 4Tregoning R L, Joyce J A. Application of a T-stress based constraint correction to A533B steel fracture toughness data [M]. Reuter W G, Piascik R S eds. ASTM STP 1417,West Conshohocken, PA: American Society for Testing and Materials,Fatigue and Fracture Mechanics, 2002,33:309-340. 被引量:1
  • 5John M B, Stanley T R. Fracture and fatigue control in structures: application of fracture mechanics [M]. ASTM stock number: MNL.41,1977,23. 被引量:1
  • 6Irwin G R. Relation of crack-toughness measurements to practical application [J].ASME Paper No. 62-MET-15, presented at Metals Engineering Conference, Cleveland, April 9-13,1962, 62(15): 1-13. 被引量:1
  • 7Pardoen T,Hachez F,Marchioni B, Blyth P H, Atkins A G. Mode I fracture of sheet metal [J]. Journal of the Mechanics and Physics of Solids, 2004, 52(22): 423-452. 被引量:1
  • 8Lei Y, O'Dowd N P, Busso E P, Webster G A. Weibull stress solutions for 2-D cracks in elastic and elastic-plastic materials [J]. International Journal of Fracture, 1998,89(3):245-268. 被引量:1
  • 9国家技术监督局.GB4161-84,金属材料平面应变断裂韧性KIC试验方法[S].北京:中国标准出版社,1984. 被引量:1
  • 10国家技术监督局.GB2038-91,金属材料延性断韧度JIC试验方法[S].北京:中国标准出版社,1991. 被引量:1

二级参考文献6

  • 1[1]Timofeev B T, Blumin A A, Anikovsky ⅤⅤ. Fracture toughness of low carbon steels and their weldments. Int. J. of Pressure Vessels and Piping, 1998, 75: 945 ~ 950. 被引量:1
  • 2[2]Putatunda Susil K. Fracture toughness of high carbon and high silicon steel. Materials Science and Engineering, 2001, A297:31 ~ 43. 被引量:1
  • 3[3]Tahtinen S, Laukkanen A, Singh B N. Damage mechanisms and fracture toughness of GlidCop(R) CuAl25 IGO copper alloy. J. of Nuclear Materials, 2000, 283~287:1028~1032. 被引量:1
  • 4[4]Nagal G, Blauel J G. Evaluation of the standard master curve for fracture toughness determination. Nuclear Engineering and Design, 1999, 190:159~169. 被引量:1
  • 5[5]Lambrigger M. Master curve for brittle cleavage fracture toughness testing. Engineering Fracture Mechanics, 1996, 55(4):677~678. 被引量:1
  • 6[6]Liebowitz H. Fracture. Vol. Ⅱ, New York: Academic Press, 1968. 被引量:1

共引文献29

同被引文献20

  • 1S.V. Bobylev,A.K. Mukherjee,I.A. Ovid’ko,A.G. Sheinerman.Effects of intergrain sliding on crack growth in nanocrystalline materials[J].International Journal of Plasticity.2010(11) 被引量:2
  • 2Herbert Gleiter.Our thoughts are ours, their ends none of our own: Are there ways to synthesize materials beyond the limitations of today?[J].Acta Materialia.2008(19) 被引量:1
  • 3S.V. Bobylev,A.K. Mukherjee,I.A. Ovid’ko.Emission of partial dislocations from amorphous intergranular boundaries in deformed nanocrystalline ceramics[J].Scripta Materialia.2008(1) 被引量:1
  • 4M. Dao,L. Lu,R.J. Asaro,J.T.M. De Hosson,E. Ma.Toward a quantitative understanding of mechanical behavior of nanocrystalline metals[J].Acta Materialia.2007(12) 被引量:1
  • 5Jason R. Trelewicz,Christopher A. Schuh.The Hall–Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation[J].Acta Materialia.2007(17) 被引量:1
  • 6B. Zhu,R.J. Asaro,P. Krysl,R. Bailey.Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals[J].Acta Materialia.2005(18) 被引量:1
  • 7M.A. Meyers,A. Mishra,D.J. Benson.Mechanical properties of nanocrystalline materials[J].Progress in Materials Science.2005(4) 被引量:1
  • 8Robert J. Asaro,Petr Krysl,Bimal Kad.Deformation mechanism transitions in nanoscale fcc metals[J].Philosophical Magazine Letters.2003(12) 被引量:1
  • 9A.A. Fedorov,M.Yu. Gutkin,I.A. Ovid’ko.Transformations of grain boundary dislocation pile-ups in nano- and polycrystalline materials[J].Acta Materialia.2002(4) 被引量:1
  • 10杨圣奇,蒋昱州,温森.两条断续预制裂纹粗晶大理岩强度参数的研究[J].工程力学,2008,25(12):127-134. 被引量:13

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部