摘要
本文讨论含元x使(adx)^(dimL-1)=0但(adx)^(dimL-2)≠0的特征零李代数L的结构,利用关于可解李代数的结论,对这种不可解李代数进行了完全分类;还证明了,在这样的代数中,这些元素在AutL下是相互共轭的(允许相差一非零常数倍)。
This paper discusses the structure of characteristic zero Lie algebra L which contains an clement x such that (adx)^(dimL-1)=0 but (adx)^(dimL-2)≠0. Based on the results of soluble algebras, the nonsoluble algebras are classified. It is also proved that such elements in such algebra are all conjugate under Aut L, up to nonzero scalar multiples.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
1989年第5期38-45,共8页
Journal of Southeast University:Natural Science Edition
关键词
李代数
可解
幂零
共轭
Soluble, nilpotent, cojugate/self-centralization nilpotent