期刊文献+

固态燃料空气炸药空爆实验研究 被引量:1

Experimental Study on the Blast Effect of the Solid Fuel Air Explosive in Free Air
下载PDF
导出
摘要 通过四组无约束固态燃料空气炸药(FAE)装置与等质量的TNT在野外开放空间的一次起爆对比实验,测得了不同配方组份FAE装置在不同距离的爆炸超压分布,FAE装置峰值超压比相同距离的TNT高1.14~1.6倍;并运用空气冲击波峰值超压公式计算出了FAE的等效爆炸TNT当量随距离的变化关系,在爆炸场边缘区,FAE装置爆炸当量达到了3.88倍TNT当量;通过高速摄影的图片得到了爆炸产生火球的持续时间和最大作用范围,与等质量TNT爆炸火球相比,FAE的优势明显;运用粉尘爆炸下极限浓度估算了云雾爆轰区半径,并分析了测量到的固态FAE爆炸场的压力分布单调衰减的原因;建议在保持超压不变的情况下,把提高爆温作为提高FAE爆炸性能的主要途径。 Using Field single ignition experiments of the four unconfined volume dispersion and small dosage solid FAE and TNT bombs experiments, we got the peak overpressures of solid FAE at different distances. Compared with TNT, The overpressure of FAE is 1.14-1.6 times higher than that of the TNT. Based on the theory of the air shock wave overpressure, the FAE relativity TNT mass is evaluated. At the edge of the explosive field, the number is 3. 88. Pictures of high speed photography indicate that the duration and the most effect area of the FAE and TNT. Compared with TNT, obviously the FAE has more advantages. And, based on the theory of the critical concentration of dust explosion, the radius of dust explosive zone is evaluated. The phenomenon that the overpressure decays rapidly with distance is analyzed. It is suggested that the explosive temperature should be increased as the main approach to improve the FAE explosive capability in the condition when the over pressure is invariable.
出处 《实验力学》 CSCD 北大核心 2007年第5期489-494,共6页 Journal of Experimental Mechanics
关键词 燃料空气炸药 爆炸 压力 温度 性能 fuel air explosive explosive pressure temperature capability
  • 相关文献

参考文献12

  • 1Smirnov N N, Nikitin V F. Ignition and combustion of turbulized dust-air mixtures[J]. Combustion and Flame, 2000,123:46. 被引量:1
  • 2蒲加顺 白春华 等.多元混合燃料分散爆轰研究[J].火炸药学报,1998,(1):1-5. 被引量:9
  • 3张奇,白春华,刘庆明,郭彦懿,王仲琦,刘长林.一次引爆燃料空气炸药及其爆炸效应研究[J].实验力学,2000,15(4):448-453. 被引量:14
  • 4Elbe G Von, et al. Chemical initiation of FAE clouds[R]. AD A061899 (AFOSR-TR-78-1479), 1978:17. 被引量:1
  • 5Elbe G Von, et al. Chemical initiation of FAE clouds[R]. AD A096415 (AFOSR-TR-81-0255), 1981:21. 被引量:1
  • 6Rao A A. Fuel Air Explosive[J]. Def. Sci. J. , 1987,37(1):23-28. 被引量:1
  • 7Stayles D C. Method of generating single-event unconfined Fuel-Air Detonation[R]. US Patent 4463680, 1984:5. 被引量:1
  • 8Gelfand B E, et al. Dispersion and self-ignition characteristics of boron organic compounds behind shock waves [M]. Combust. Boron-Based Solid Propellants Solid Fuels, 1993:196-202. Edited by Kuo, Kenneth K. 被引量:1
  • 9Murray S B, et al. Initiation of hydrogen-air detonations by turbulent fluorine-air jets[J]. Dynamics of Detonation and Explosions : Detonations, Progress. Astrou. Aeronau, 1991,133:91 - 117. 被引量:1
  • 10Lee J H S, et al. Turbulent jet initiation of detonation[J]. Combust Flame, 1991, 84(1-2):170-180. 被引量:1

二级参考文献2

  • 1张奇,火炸药学报,2000年,23卷,1期,52页 被引量:1
  • 2蒲加顺,火炸药学报,1998年,21卷,1期,1页 被引量:1

共引文献20

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部