摘要
多频极化SAR图像不同的波段和极化方向上存在着冗余信息和相干斑噪声。为此,提出了一种基于核主分量分析(KPCA)的多频率多极化SAR图像信息压缩和抑噪方法。KPCA通过利用"核技巧",对线性PCA进行了非线性的推广。对NASA/JPL 3个波段的多极化SAR图像实验结果表明,相对于线性PCA,KPCA具有更好的信息提取、压缩和噪声抑制作用。
Aim. To our knowledge, there does not exist any paper in the open literature about making use of KPCA (kernel principal component analysis) for improving information compression and speckle reduction for multifrequency polarimetric SAR (synthetic aperture radar) image. We now present our research results on such an application. In the full paper, we explain our research results in some detail; in this abstract, we just add some pertinent remarks to listing the two topics of explanation. The first topic is: KPCA method. In this topic, we mention that KPCA is the nonlinear generalization of linear principal component analysis (PCA) using a kernel trick, which utilizes the Mercer kernel function to calculate the dot product of feature space. The second topic is: information compression and speckle reduction based on KPCA. In this topic, we derive Eq. (10) in the full paper to apply KPCA to directly processing the intensity or amplitude of muhipolarimetric SAR images. The first few principal component images thus obtained compress information, reduce speckle and strengthen details. Finally we take the NASA/JPL muhipolarimetric SAR images of P, L, and C band quadpolarizations as illustrative images to experiment on our research. The experimental results show preliminarily that our KPCA method can extract and compress the information of original images more effectively than linear PCA and only involves the calculation of eigenvalues of a kernel matrix.
出处
《西北工业大学学报》
EI
CAS
CSCD
北大核心
2007年第5期708-711,共4页
Journal of Northwestern Polytechnical University
基金
国家自然科学基金(60472072)
陕西省自然科学基础研究计划(2006F05)
航空科学基金(05I53076)资助
关键词
核主分量分析
多频极化SAR图像
信息压缩
抑噪
kernel principal component analysis (KPCA), multifrequency polarimetric SAR image, information compression, speckle reduction