摘要
研究了三维系统偏差条件下的扩维目标跟踪问题,提出了一种基于扩展卡尔曼滤波器的目标状态与系统偏差的联合估计算法,并在此基础上探讨了三种系统偏差条件下状态估计的初始化方法。Monte-Carlo仿真表明,ASEKF算法能有效地对目标状态和系统偏差进行实时联合估计。
The problem that how to track a three-dimensional target with systematic errors is researched in this paper. Using the extended Kalman filter, an augmented state extended Kalman filter(ASEKF) algorithm for joint estimation of state and systematic errors is proposed. In order to initializes the state estimation, three methods is derived. The Monte-Carlo simulation results show that the ASEKF algorithm can estimate efficiently.
出处
《弹箭与制导学报》
CSCD
北大核心
2007年第4期312-315,322,共5页
Journal of Projectiles,Rockets,Missiles and Guidance
基金
国家自然科学基金(60172033)资助
国家自然科学基金(60541001)资助
全国优秀博士学位论文作者专项资金(200443)资助
关键词
雷达组网
目标跟踪
误差配准
信息融合
扩展卡尔曼滤波
radar networking
target tracking
error alignment
information fusion
extended Kalman filter