期刊文献+

新型Ni-Cu复合镀层的制备 被引量:6

Preparation of Ni-Cu composite coating by composite electroplating
下载PDF
导出
摘要 采用复合电镀方法,在镀镍液中加入粒径为5~10μm的铜微粒(晶粒粒径为52 nm)制备Ni-Cu复合镀层,探讨阴极电流密度、镀液的pH值与温度、搅拌速度、铜微粒含量和镍离子浓度对Ni-Cu复合镀层中铜微粒共析量的影响。结果表明,最佳镀液组成和工艺参数如下:七水合硫酸镍250~300 g/L,六水合氯化镍30~60 g/L,硼酸35~40 g/L,十二烷基硫酸钠0.05~0.1 g/L,pH值3.5~4.0,温度55~60℃,阴极电流密度2~3 A/dm2,搅拌速度为500~600 r/min,铜粉质量浓度8~9 g/L;镀层致密且铜微粒分布均匀;Ni-Cu复合镀层中铜的质量分数在5%~30%之间,其显微硬度HV0.2在450~750之间,且随镀层中铜含量的增大而增大,表现出高硬度的特点。 The Ni-Cu composite electrodeposition was prepared by composite electroplating when the Cu particles with 5-10 μm in size(the grain size is 52 nm) were put into the solution of Ni electroplating. The effects of cathode current density, pH value, temperature of solution, stirring rate, Cu particle content and concentration of Ni^2+ on the content of Cu in Ni-Cu composite deposits were investigated to obtain tight Ni-Cu composite coating. The experimental results show that the optimal technological condition is as follows: NiSO4·7H2O, 250-300 g/L; NiCl2·6H2O, 30-60 g/L; H3BO3, 35-40 g/L; C12H25SO4Na, 0.05-0.10 g/L; pH value, 3.5-4.0; temperature, 55-60℃; cathode current density, 2-3 A/dm^2; stirring rate, 500-600 r/min; Cu content in solution, 8-9 g/L. The results of SEM and EDS analysis indicate that the Ni-Cu composite coating is dense and Cu particles in composite coating distribute uniformly; Cu content in the composite coating ranges from 5% to 30%. The microhardness (HV0.2) is between 450 and 750, increasing with the increase of Cu content in the composite coating. The composite coatings show the characteristic of high hardness.
作者 楚广 刘生长
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第3期474-479,共6页 Journal of Central South University:Science and Technology
关键词 复合电沉积 制备 copper nickel composite electrodeposition preparation
  • 相关文献

参考文献4

二级参考文献22

  • 1王景成.关于纳米晶材料微结构的正电子湮没研究[J].钢铁研究,1995,23(5):55-58. 被引量:5
  • 2郭鹤桐 张三元.复合镀层[M].天津:天津大学出版社,1990.. 被引量:5
  • 3Yeh S H,Plating Surface Finishing,1997年,84卷,3期,54页 被引量:1
  • 4郭鹤桐,复合镀层,1990年,88页 被引量:1
  • 5张立德 等.纳米材料和纳米结构[M].科学出版社,2002.(2),25. 被引量:45
  • 6Nieman G W,Weertman J R,Siegle R W.Microhardness of nanocrystalline palladium and copper produced by inert-gas condensation[J].Scripta Metal Mater,1989,23:2013-2018. 被引量:1
  • 7Youngdahl C J,Weertman J R,Hugo R C,et al.Deformation behavior in nanocrystalline copper[J].Scripta Metal Mater,2001,44:1475-1478. 被引量:1
  • 8Shen T D,Ge W Q,Wang K Y,et al.Structural disorder and phase transformation in graphite produced by ball milling[J].Nanostruct Mater,1997,7(4):717-726. 被引量:1
  • 9Tan L K,Li Y,Ng S,et al.Structures,properties and responses to heat treatment of Cu-Y alloys prepared by mechanical alloying[J].Journal of Alloys and Compounds,1998,278:201-208. 被引量:1
  • 10Suryanarayanan R,Frey Claire A,Shankar Sastry M L.Mechanical properties of nanocrystalline copper produced by solution-phase synthesis[J].J Mater Res,1996,11(2):439-448. 被引量:1

共引文献44

同被引文献75

引证文献6

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部