摘要
采用考虑起始水力梯度的非Darcy渗流方程,修正了Terzaghi饱和粘土一维固结理论,并对初始孔压沿深度线性分布的情况用有限体积法进行了求解.计算结果表明,考虑渗流起始水力梯度时,地基的固结速度要慢于Terzaghi固结理论值,而且除固结系数外,渗流起始水力梯度、土层厚度以及初始孔压的大小和分布也都对地基的固结有显著影响.另外还证实,当主固结完成时,地基中存在一定的残余孔隙水压力无法完全消散,因此地基的最终固结度总小于1.
Terzaghi's one-dimensional consolidation theory is modified based on the modified non-Darcy seepage equation. Considering the initial hydraulic gradient, and the relevant equation, the case of the linear distribution of initial pore water-pressure is solved in this paper by using the finite volume method. The analytical results indicate that, the rate of consolidation for the soils with the nonzero initial hydraulic gradient of seepage is less than that by applying Terzaghi's consolidation theory, and the initial hydraulic gradient, the thickness of the layer and the distribution of initial pore water-pressure, besides the consolidation coefficient, also play important roles in the process of consolidation. In addition, it is validated that the ultimate value of the average degree of consolidation is less than 1 since there exists some residual pore waterpressure which cannot be completely dissipated in the soil layer at the end of the primary consolidation.
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第5期142-146,共5页
Journal of Lanzhou University(Natural Sciences)
基金
东莞市科技计划(2006-117)
东莞理工学院教授
博士科研启动基金(ZG060901)资助项目.
关键词
固结理论
非DARCY渗流
起始水力梯度
有限体积法
consolidation theory
non-Darcy seepage
initial hydraulic gradient
finite volume method