期刊文献+

带有偏序逼近族的偏序集上Scott拓扑的比较 被引量:4

The Comparision of Scott Topology on Posets with Families of Partial Order
下载PDF
导出
摘要 设(A,■)是偏序集,ω是自然数集,若对任意n∈ω,■n是A上的偏序,■n+1■n,∩n∈ω■n=■,则称(A,■)是带有偏序逼近族R={■n|n∈ω}的偏序集,简称为R-偏序集,记为(A,■;R).若n∈ω,An=(A,■n)是cpo,且对n∈ω,令Tn表示关于■n的Scott拓扑,本文给出了Tn弱于Tn+1的一个充分条件,以及它的简单应用. Let (A, ) be a poset, ω natural number set if forall n in ω, n is a partial order on A and n +1 lohtain in n.∩∈ω n= .then call ( A, ) a poset with partial order family R = { n│n∈ω}, R-poset for short. If forall n ∈ ω, A, = (A, n ) is a cpo(completely partial order), let Fn,F represent Scott topology conresponding n, respectively. The paper provides a sufficient condition that makes Fn weaker than Fn+1, and there is a simple application of that condition in the paper.
作者 武利刚 樊磊
出处 《首都师范大学学报(自然科学版)》 2007年第5期14-16,21,共4页 Journal of Capital Normal University:Natural Science Edition
关键词 R-偏序集 SCOTT拓扑 Alexander拓扑 拓扑的比较 R-poset, Scott topoology, Alexander topology, comparison of toplogies
  • 相关文献

参考文献8

  • 1Luís Monteiro.Semantic domains based on sets with families of equivalence[J].Electronic Notes in Theoretical Computer Science,1998,11:11-34. 被引量:1
  • 2Viggo Stoltenberg Hansen.Ingrid lindstrom and edward R.Griffor[M].Mathematical Theory of Domains.Cambridge University Press,1994. 被引量:1
  • 3Samson Abramsky and Achim Jung:Domain theory[M].In S.Abramsky,D.Gabay and T.S.E.Maibaum,editors.Handbook of Logic in Computer Science,Vol.3.pp.1-16.Oxford University Press,1995. 被引量:1
  • 4Michael W,Misolve Topolgy.Domain theory and teheoretical computer science[J].Topology and its Applications,1998,89:3 -59. 被引量:1
  • 5Davey B A,Priestley H A.Introduction to lattices and order[M].Cambridge Press,2002. 被引量:1
  • 6James R.Munkers Topolgy(Second Edition)[M].Pearson Education Asia Limited and China Machine Press.2004. 被引量:1
  • 7冀文..信息序的逼近与广义链完备化[D].首都师范大学,2005:
  • 8郑崇友,樊磊,崔宏斌..Frame与连续格[M].北京:首都师范大学出版社,1994:234.

同被引文献19

  • 1高泾萍,何伟,樊磊,李娜.R-偏序集及其Scott拓扑[J].中央民族大学学报(自然科学版),2006,15(4):330-333. 被引量:3
  • 2Luis Monteiro. Semantic domains based on sets with families of equivalences [ J ]. Electronic Notes in Theoretical Computer Science, 1995, 11: 1- 34. 被引量:1
  • 3Samson Abramsky, Achim Jung. Domain theory[M] .In S. Abramsky, D. Gabay and T. S. E. Maibaum, editors. Handbook of Logic in Computer Science, Vol. 3, pp. 1-168. Oxford University Press, 1995. 被引量:1
  • 4Viggo Stohenberg-Hansen, Ingrid Lindstrom, Edward R. Griffor. Mathematical theory of domains [ M ]. Cambridge University Press, 1994. 被引量:1
  • 5Michael W. Mislove, Topology. Domain theory and theoretical computer science. Topology and its Applications, 1998,89 : 3 - 59. 被引量:1
  • 6Tarski A. A lattice theoretical fixpoint theorem and its applications. Pacific J, 1955, 5:285- 309. 被引量:1
  • 7Samson A,Achim J.Domain theory[M].Handbook of Logic in Computer Science,Clarton Press,1995. 被引量:1
  • 8Viggo S H,Ingrid L,Edward G R.Mathematical theory of domains[M].London:Cambridge University Press,1994. 被引量:1
  • 9Abramsky S, Jung A. Domain theory. Abramsky S, Gabay D, Maibaum T S. Handbook of logic in computer science, vol. 3. Oxford University Press, 1995:1 - 168. 被引量:1
  • 10Stoltenberg-Hansen S, Lindstr-m I, Griffor E R. Mathematical theory of domains[M]. Cambridge University Press, 1994. 被引量:1

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部